
Machine Learning for Polar Codes in Small IoT

Devices

Xian Liu

Department of Systems Engineering

University of Arkansas at Little Rock

Little Rock, USA

Changcheng Huang

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

 Abstract – Error-correction in the communication module of

IoT systems is a mission-critical task. The Polar code is one of

the modern 5G wireless technologies. Most conventional

decoding methods are iterative. It is interesting to investigate

the feasibility of AI methodology, such as machine learning, for

small Polar codes. In this paper, we design a small artificial

neural network for this purpose. It is shown that this neural

network can successfully decode four small Polar codes: both

non-systematic and systematic, with codeword length 8 and 16,

respectively.

 Keywords – 5G communications, artificial neural network,

error correction coding, Internet of Things, machine learning.

I. INTRODUCTION

 As a fast-evolving interdisciplinary field, Internet of

Things (IoT) embraces many cutting-edge concepts arising

from the fifth-generation (5G) wireless technologies,

robotics, and artificial intelligence (AI) ([1], [2]). This

paper addresses a specific issue: the possibility of applying

the AI methodology to the error-correction procedure in the

communication module integrated in general IoT devices.

One of the latest 5G wireless techniques is considered as a

case study: Polar coding. The general background is

described in this section and following.

 An impressive estimate is that the modern IoT would

consist of multiple billion objects in two or three years. A

large portion of IoT involves mission-critical objects like

communications, controllers, and actuators, which are the

fundamental units in most IoT systems. For these

applications, the signals for remote-control must be swift

and reliable. The swiftness implies that the protocols of

automatic repeat request (ARQ) are not appropriate.

Therefore, the reliability needs to be attained with the aid of

the error correction coding (a.k.a. channel coding) [3]. In

modern coding theory, one of the state-of-the-art schemes is

the Polar codes proposed by Arikan [4]. The present work

focuses on small Polar codes for small IoT systems.

Currently, the polar codes are mainly used for the 5G new

radio (NR) control channel. This is particularly important

for the remote-control procedure in most small IoT devices.

 The diversity of small IoT devices would post a

requirement for versatility of channel coding methods. Most

decoding schemes are implemented in an iterative manner.

However, compact and parallel schemes are desirable for

the small devices with limited computing capacity and/or

limited storage capacity. The present work describes the

decoding approach for Polar codes by means of machine

learning (ML) [5].

 Nowadays, ML has been recognized as the core

infrastructure of modern AI systems. It is highly interesting

in investigating the feasibility of applying ML to deal with

channel coding. In this paper, we report our practice and

experience of applying the ML methodology to decode the

non-systematic and systematic Polar codes.

 The rest of this paper is organized as follows. In Section

II, the system model and the Polar codes are reviewed.

Then, in Section III, machine learning is introduced. Next,

in Section IV, the decoding experiments with a neural

network are reported and discussed. The conclusion is

included in Section V.

 Consistent with the notations in most papers in Polar

codes, we use),(knGP to represent the generator matrix of

the Polar code with codeword length n and user word

length .k Accordingly, in total there are k2 codewords.

II. THE SYSTEM MODEL AND POLAR CODING

 The present work is concerned with digital wireless

communication systems. The block diagram of this system

is presented in Fig. 1. In a generic way, the communication

procedures of a digital signal can be described as follows.

In the transmitter side, to focus on the core concept, we omit

the line coding module and the source coding module. With

this simplification, we start looking at a random user word

that enters the channel encoder. Then the channer encoder

creates a codeword. Next, digital modulation is carried out.

The modulated word is transmitted over a noisy channel

(e.g., the AWGN channel). At the receiver side, the noisy

signal is demodulated first. Then the detector makes a hard

decision or soft decision. The former is based on the

Hamming distance and the output is discrete, whereas the

latter is based on the Euclidian metrics in the signal space.

At this point, the output of the detector is a corrupted

codeword. Next, this corrupted codeword enters the channel

decoder. The channel decoder consists of two parts. In

concept, the first part could be a brute-force algorithm that

seeks the closest codeword from the corrupted codeword,

keeping in mind that almost every practical code has its

highly crafted algorithm. The second part is the algorithm

that maps the found codeword to a user word.

Figure 1. The digital wireless communication system.

 In the discipline of error correction coding, the Polar code

represents one of the most remarkable achievements. The

Polar code is an elegant example of the linear block codes.

Theoretically, it is the first provably capacity-achieving

code, rather than demonstratively as other modern codes. In

the literature, most reported Polar codes were non-

systematic. For example, the following non-standard

generator matrix was presented in [6],

)1(.

11111111

0101

0011

0000

0000

0101

0011

1111

0011

)5,8(

=PG

 Starting from the first order and second order of Reed-

Muller code of length 16, we can also construct a non-

standard generator for the Polar code of length 16:

)2(

.

1111

0101

0011

0000

1111

0101

0011

1111

1111

0101

0011

0000

1111

0101

0011

1111

0000

0001

0000

0000

0000

0001

0101

0011

1111

0001

0000

0000

1111

0001

0101

0011

)8,16(

=

PG

 The Polar code is linear. According to coding theory, any

non-systematic linear code can be converted to a systematic

code, by converting the non-standard generator matrix to a

standard form [7, Theorem 5.5]. With the procedure

presented in [7, pp. 50-52], we can convert the above

matrices to the standard forms, denoted as)5,8(PSG and

),8,16(PSG respectively:

)3(,

10010000

0010

0100

1110

1110

1000

0100

0010

0001

)5,8(

=PSG

)4(],|[)8,16(88 BIGPS =

where 8I is the identity matrix of order 8, and

)5(.

1111

1100

1010

1001

1110

0001

0001

0001

1000

1000

1000

0111

1001

0101

0011

1111

8

=B

 In Section IV, we will show that the ML decoder

performs better for the systematic Polar code.

III. MACHINE LEARNING AND NEURAL NETWORK

 Currently there is an enthusiastic interest in machine

learning (ML) or its advanced variant, deep learning (DL)

[5]. Since the modern MD/DL discipline is built upon the

neural networks (NN), the key insight can be gained by

understanding the intrinsic principle of NN. There is a

hierarchy of taxonomy. In general, NN can perform the

supervised training or unsupervised training. NN can be

applied to pattern classification or function approximation.

For the present problem, we mainly address the aspects of

NN for function approximation and supervised training. In

this context, the NN methodology can be considered as a

variant of mathematical regression. To simplify the concept,

let us consider the linear regression. The NN discipline

employs the following formula to approximate the unknown

function in the form:

)6(),(* cwyhx +=

where w and c are commonly called weight and bias, while

)(•h is the (composite, chained) activation (transfer)

function in the context of NN. The goal of the training

process in NN is just to find the values of (,).w c After that,

for any new values of ,y the formula (6) can be directly

used to calculate the corresponding target *.x

Channel

Encoder

Digital

Modulator

Channel

Digital

Demodulator

Detector

Channel

Decoder

 In principle, two types of datasets are needed for the

supervised training. In the context of the present work, one

dataset consists of the original user words and the other

dataset contains the corrupted codewords. These two

datasets can be obtained through field measurement or a

simulation. Note that our current interest is in decoding.

Therefore, the corrupted codewords are used as the input

dataset to NN, while the original user words are employed

as the target dataset of NN. For a standard NN, the input

data is typically formatted as an R Q matrix, where R is

the number of elements in each sample, while Q is the

number of total samples. In the current problem, R is just

the length of a single corrupted codeword. Q is dependent

on the dimensions of NN. As a general rule to mitigating

overfitting, the number of input items should be larger than

the number of total unknown weight and bias in the

concerned NN.

 In this study, we designed a feed-forward neural network

(FNN) [5, Ch. 6]. This FNN consists of three hidden layers,

with 64, 32, and 16 neurons, respectively. Given the

codeword length, the number of total unknowns can be

derived accordingly. In the experiments, we used more

samples than the number of total unknowns to avoid

overfitting.

 The standard NN consists of three processes: training,

validation, and testing. First, in the training stage, the NN

uses the available data to adjust the weights and bias.

Secondly, in the validation stage, the NN tries to tune the

hyper-parameters (HPs) up. One of the most common HPs

is just the weight decay. Another example of HPs is the

polynomial degree in the NN involving nonlinear

regression. Thirdly, in the testing stage, a set of new data

samples are used to verify the established mapping by NN.

In our experiments, over the entire dataset, 70%, 15%, and

15% of samples were used for training, validation, and

testing, respectively.

IV. DECODING EXPERIMENTS

 To assess the decoding functionality of the configured

FNN, we conducted extensive experiments. Both FNN and

the channel simulation are implemented in Matlab (R2018b).

 In the experiments, the Levenberg-Marquardt (LM)

algorithm was adopted as the training method. In the context

of FNN, the LM algorithm is usually the first choice [5]. For

activation functions, all three hidden layers use the log-

sigmoid function and the output layer uses the pure linear

function. The log-sigmoid function is defined as follows:

)7(.
)exp(1

1
)(

t
tf

−+
=

 The main operating parameters of this FNN are listed in

Table I, where trainParam.epochs is the maximum number

of iterations to train, trainParam.max_fail is maximum

validation failures, and trainParam.min_grad is the

minimum performance gradient.

TABLE I. MAIN PARAMETERS IN FNN

Parameters Value

trainParam.epochs 200

trainParam.max_fail 10

trainParam.goal 610−

trainParam.min_grad 610−

A. The Non-Systematic Polar (8, 5) Code

 This code is generated from the matrix presented in (1).

A.1 Training

 The performance of mean square error (MSE) of training,

validation, and testing are illustrated in Fig. 2. Next, the

corresponding error profile is presented in Fig. 3, where the

ordinate represents the number of errors that falls within

each interval on the abscissa. It is observed that most

instances fall in a very narrow error interval of .105 5−

 According to one of the main criteria of NN, the training

tends to be perfect if the value of index R is close to 1.

Basically, the index R characterizes the match between the

provided values and the predicated values. In the context of

decoding an error correction code, the provided values are

the given corrupted codewords, while the predicated values

are the use words regenerated by the FNN. As shown in Fig.

4, the index R is almost perfect. Accordingly, it is

concluded that the communication system has been

successfully trained by this FNN.

Figure 2. Mean square error (MSE) performance.

Figure 3. Histogram of errors.

Figure 4. Scatter plots.

A.2 Decoding Test

 In the ML procedure, the test stage follows the training

stage. As one of the most important axioms of ML, the

datasets used for testing should have never been used in the

training stage. For this purpose, we run simulations to

generate different random data pairs of user words and

corrupted codewords were independently generated for use.

The SNR is used as one of the main parameters in

simulations. For each SNR, three datasets are tested. Each

dataset contains 3369 samples. The performance is

evaluated with the bit error rate (BER), which characterizes

the difference between the estimated user words and the

original user words. The profile is illustrated in Fig. 5.

Figure 5. Performance of ML decoding.

B. The Systematic Polar (8, 5) Code

 This code is generated from the matrix presented in (3).

B.1 Training

 In this experiment, all parameters are the same as those

used for the non-systematic case. The performance of MSE

of training, validation, and testing are illustrated in Fig. 6.

We note that the number of epochs is reduced from 16 to 9,

a significant increase in training efficiency. Furthermore, as

shown in Fig. 7, the index R is almost perfect. Accordingly,

this code has been successfully trained by the FNN.

Figure 6. Mean square error (MSE) performance.

B.2 Decoding Test

 Similar to the non-sysemstic code, for each SNR, three

datasets are tested. Each dataset contains 3369 samples. The

profile of BER against SNR is illustrated in Fig. 8.

Compared with Fig. 5, it is observed that the BER is

significantly reduced in the low SNR regime. For example,

at SNR = 5 dB, the BER in Fig. 8 is around ,106 3− while

in Fig. 5 the corresponding BER is about .105.1 2−

Figure 7. Scatter plots.

Figure 8. Performance of ML decoding.

C. The Non-Systematic Polar (16, 8) Code

 This code is generated from the matrix presented in (2).

C.1 Training

 In this experiment, all parameters are the same as those

used for the Polar code (8, 5). The performance of MSE of

training, validation, and testing are illustrated in Fig. 9. The

training is stopped at the specified threshold with 17 epochs.

As shown in Fig. 10, the training is successful.

Figure 9. Mean square error (MSE) performance.

Figure 10. Scatter plots.

C.2 Decoding Test

 The profile of BER vs. SNR is presented in Fig. 11. For

each SNR, three datasets are tested. Each dataset contains

3369 samples. It is similar to the profile of non-systematic

Polar code (8, 5) as shown in Fig. 5.

D. The Systematic Polar (16, 8) Code

 This code is generated from the matrix presented in (4).

D.1 Training

 In this experiment, all parameters are the same as those

used for the non-systematic case. The performance of MSE

of training, validation, and testing are illustrated in Fig. 12.

The training is stopped at the specified threshold with 12

epochs. As shown in Fig. 13, the training is successful.

Figure 11. Performance of ML decoding.

Figure 12. Mean square error (MSE) performance.

D.2 Decoding Test

 Similar to the non-sysemstic code, for each SNR, three

datasets are tested. Each dataset contains 3369 samples. The

profile of BER against SNR is illustrated in Fig. 14.

Compared with Fig. 11, it is observed that the BER is

significantly reduced in the low SNR regime. For example,

at SNR = 6.5 dB, the BER in Fig. 14 is around ,102 3−

while in Fig. 11 the corresponding BER is about .105 3−

V. CONCLUSION

 This paper investigates the feasibility of applying the ML

methodology to the error-correction procedure in the

remote-control module integrated in compact IoT devices.

In this study, we use the neural network (NN) to decode four

small Polar codes: non-systematic (8, 5) and systematic (8,

5), as well as non-systematic (16, 8) and systematic (16, 8).

It is shown that, with an appropriately configured NN, the

decoding can be well done. So those long iterative decoding

approaches could be avoided in small IoT devices.

Figure 13. Scatter plots.

Figure 14. Performance of ML decoding.

REFERENCES

[1] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Enge,

and L. Ladid, “Internet of Things in the 5g era: enablers, architecture, and

business models,” IEEE Journal on Selected Areas in Communications,

vol. 34, no. 3, pp. 510-527, 2016.

[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,

“A survey on 5G networks for the Internet of Things: communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619-3647, 2018.

[3] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting

Codes, Cambridge University Press, 2003.
[4] E. Arıkan, “Channel polarization: a method for constructing capacity

achieving codes for symmetric binary-input memoryless channels,” IEEE

Trans. Inf. Theory, vol. 55, pp. 3051–3073, July 2009.
[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

[6] E. Arıkan, “A performance comparison of polar codes and Reed-Muller

codes,” IEEE Commun. Lett., vol. 12, no. 6, pp. 447-449, June 2008.

[7] R. Hill, A First Course in Coding Theory, Oxford University Press,
1986.

