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    Abstract – Error-correction in the communication module of 

IoT systems is a mission-critical task. The Polar code is one of 

the modern 5G wireless technologies. Most conventional 

decoding methods are iterative. It is interesting to investigate 

the feasibility of AI methodology, such as machine learning, for 

small Polar codes. In this paper, we design a small artificial 

neural network for this purpose. It is shown that this neural 

network can successfully decode four small Polar codes: both 

non-systematic and systematic, with codeword length 8 and 16, 

respectively. 

    Keywords – 5G communications, artificial neural network, 

error correction coding, Internet of Things, machine learning. 

I. INTRODUCTION 

    As a fast-evolving interdisciplinary field, Internet of 

Things (IoT) embraces many cutting-edge concepts arising 

from the fifth-generation (5G) wireless technologies, 

robotics, and artificial intelligence (AI) ([1], [2]). This 

paper addresses a specific issue: the possibility of applying 

the AI methodology to the error-correction procedure in the 

communication module integrated in general IoT devices. 

One of the latest 5G wireless techniques is considered as a 

case study: Polar coding. The general background is 

described in this section and following.  

    An impressive estimate is that the modern IoT would 

consist of multiple billion objects in two or three years. A 

large portion of IoT involves mission-critical objects like 

communications, controllers, and actuators, which are the 

fundamental units in most IoT systems. For these 

applications, the signals for remote-control must be swift 

and reliable. The swiftness implies that the protocols of 

automatic repeat request (ARQ) are not appropriate. 

Therefore, the reliability needs to be attained with the aid of 

the error correction coding (a.k.a. channel coding) [3]. In 

modern coding theory, one of the state-of-the-art schemes is 

the Polar codes proposed by Arikan [4]. The present work 

focuses on small Polar codes for small IoT systems. 

Currently, the polar codes are mainly used for the 5G new 

radio (NR) control channel. This is particularly important 

for the remote-control procedure in most small IoT devices. 

    The diversity of small IoT devices would post a 

requirement for versatility of channel coding methods. Most 

decoding schemes are implemented in an iterative manner. 

However, compact and parallel schemes are desirable for 

the small devices with limited computing capacity and/or 

limited storage capacity. The present work describes the 

decoding approach for Polar codes by means of machine 

learning (ML) [5]. 

    Nowadays, ML has been recognized as the core 

infrastructure of modern AI systems. It is highly interesting 

in investigating the feasibility of applying ML to deal with 

channel coding. In this paper, we report our practice and 

experience of applying the ML methodology to decode the 

non-systematic and systematic Polar codes. 

    The rest of this paper is organized as follows. In Section 

II, the system model and the Polar codes are reviewed. 

Then, in Section III, machine learning is introduced. Next, 

in Section IV, the decoding experiments with a neural 

network are reported and discussed. The conclusion is 

included in Section V. 

    Consistent with the notations in most papers in Polar 

codes, we use ),( knGP to represent the generator matrix of 

the Polar code with codeword length n and user word 

length .k Accordingly, in total there are k2 codewords. 

II. THE SYSTEM MODEL AND POLAR CODING 

    The present work is concerned with digital wireless 

communication systems. The block diagram of this system 

is presented in Fig. 1. In a generic way, the communication 

procedures of a digital signal can be described as follows. 

In the transmitter side, to focus on the core concept, we omit 

the line coding module and the source coding module. With 

this simplification, we start looking at a random user word 

that enters the channel encoder. Then the channer encoder 

creates a codeword. Next, digital modulation is carried out. 

The modulated word is transmitted over a noisy channel 

(e.g., the AWGN channel). At the receiver side, the noisy 

signal is demodulated first. Then the detector makes a hard 

decision or soft decision. The former is based on the 

Hamming distance and the output is discrete, whereas the 

latter is based on the Euclidian metrics in the signal space. 

At this point, the output of the detector is a corrupted 

codeword. Next, this corrupted codeword enters the channel 

decoder. The channel decoder consists of two parts. In 

concept, the first part could be a brute-force algorithm that 

seeks the closest codeword from the corrupted codeword, 



 

 

keeping in mind that almost every practical code has its 

highly crafted algorithm. The second part is the algorithm 

that maps the found codeword to a user word. 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The digital wireless communication system. 

    In the discipline of error correction coding, the Polar code 

represents one of the most remarkable achievements. The 

Polar code is an elegant example of the linear block codes. 

Theoretically, it is the first provably capacity-achieving 

code, rather than demonstratively as other modern codes. In 

the literature, most reported Polar codes were non-

systematic. For example, the following non-standard 

generator matrix was presented in [6],  

 

)1(.

11111111

0101

0011

0000

0000

0101

0011

1111

0011

)5,8(























=PG  

    Starting from the first order and second order of Reed-

Muller code of length 16, we can also construct a non-

standard generator for the Polar code of length 16: 
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    The Polar code is linear. According to coding theory, any 

non-systematic linear code can be converted to a systematic 

code, by converting the non-standard generator matrix to a 

standard form [7, Theorem 5.5]. With the procedure 

presented in [7, pp. 50-52], we can convert the above 

matrices to the standard forms, denoted as )5,8(PSG  and 

),8,16(PSG respectively: 
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where 8I is the identity matrix of order 8, and 
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    In Section IV, we will show that the ML decoder 

performs better for the systematic Polar code. 

III. MACHINE LEARNING AND NEURAL NETWORK 

    Currently there is an enthusiastic interest in machine 

learning (ML) or its advanced variant, deep learning (DL) 

[5]. Since the modern MD/DL discipline is built upon the 

neural networks (NN), the key insight can be gained by 

understanding the intrinsic principle of NN. There is a 

hierarchy of taxonomy. In general, NN can perform the 

supervised training or unsupervised training. NN can be 

applied to pattern classification or function approximation. 

For the present problem, we mainly address the aspects of 

NN for function approximation and supervised training. In 

this context, the NN methodology can be considered as a 

variant of mathematical regression. To simplify the concept, 

let us consider the linear regression. The NN discipline 

employs the following formula to approximate the unknown 

function in the form: 

)6(),(* cwyhx +=  

where w and c are commonly called weight and bias, while  

)(•h  is the (composite, chained) activation (transfer) 

function in the context of NN. The goal of the training 

process in NN is just to find the values of ( , ).w c  After that, 

for any new values of ,y  the formula (6) can be directly 

used to calculate the corresponding target *.x  
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    In principle, two types of datasets are needed for the 

supervised training. In the context of the present work, one 

dataset consists of the original user words and the other 

dataset contains the corrupted codewords. These two 

datasets can be obtained through field measurement or a 

simulation. Note that our current interest is in decoding. 

Therefore, the corrupted codewords are used as the input 

dataset to NN, while the original user words are employed 

as the target dataset of NN. For a standard NN, the input 

data is typically formatted as an R Q matrix, where R is 

the number of elements in each sample, while Q is the 

number of total samples. In the current problem, R is just 

the length of a single corrupted codeword. Q is dependent 

on the dimensions of NN. As a general rule to mitigating 

overfitting, the number of input items should be larger than 

the number of total unknown weight and bias in the 

concerned NN. 

    In this study, we designed a feed-forward neural network 

(FNN) [5, Ch. 6]. This FNN consists of three hidden layers, 

with 64, 32, and 16 neurons, respectively. Given the 

codeword length, the number of total unknowns can be 

derived accordingly. In the experiments, we used more 

samples than the number of total unknowns to avoid 

overfitting. 

    The standard NN consists of three processes: training, 

validation, and testing. First, in the training stage, the NN 

uses the available data to adjust the weights and bias. 

Secondly, in the validation stage, the NN tries to tune the 

hyper-parameters (HPs) up. One of the most common HPs 

is just the weight decay. Another example of HPs is the 

polynomial degree in the NN involving nonlinear 

regression. Thirdly, in the testing stage, a set of new data 

samples are used to verify the established mapping by NN. 

In our experiments, over the entire dataset, 70%, 15%, and 

15% of samples were used for training, validation, and 

testing, respectively. 

IV. DECODING EXPERIMENTS 

    To assess the decoding functionality of the configured 

FNN, we conducted extensive experiments. Both FNN and 

the channel simulation are implemented in Matlab (R2018b). 

    In the experiments, the Levenberg-Marquardt (LM) 

algorithm was adopted as the training method. In the context 

of FNN, the LM algorithm is usually the first choice [5]. For 

activation functions, all three hidden layers use the log-

sigmoid function and the output layer uses the pure linear 

function. The log-sigmoid function is defined as follows: 
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    The main operating parameters of this FNN are listed in 

Table I, where trainParam.epochs is the maximum number 

of iterations to train, trainParam.max_fail is maximum 

validation failures, and trainParam.min_grad is the 

minimum performance gradient. 

TABLE I.  MAIN PARAMETERS IN FNN 

Parameters Value 

trainParam.epochs 200 

trainParam.max_fail 10 

trainParam.goal 610−  

trainParam.min_grad 610−  

 

A. The Non-Systematic Polar (8, 5) Code 

    This code is generated from the matrix presented in (1). 

 

A.1 Training 

    The performance of mean square error (MSE) of training, 

validation, and testing are illustrated in Fig. 2. Next, the 

corresponding error profile is presented in Fig. 3, where the 

ordinate represents the number of errors that falls within 

each interval on the abscissa. It is observed that most 

instances fall in a very narrow error interval of .105 5−  

    According to one of the main criteria of NN, the training 

tends to be perfect if the value of index R is close to 1. 

Basically, the index R characterizes the match between the 

provided values and the predicated values. In the context of 

decoding an error correction code, the provided values are 

the given corrupted codewords, while the predicated values 

are the use words regenerated by the FNN. As shown in Fig. 

4, the index R is almost perfect. Accordingly, it is 

concluded that the communication system has been 

successfully trained by this FNN. 

 

 

Figure 2.  Mean square error (MSE) performance. 



 

 

 

Figure 3.  Histogram of errors. 

 

Figure 4.  Scatter plots. 

A.2 Decoding Test 

    In the ML procedure, the test stage follows the training 

stage. As one of the most important axioms of ML, the 

datasets used for testing should have never been used in the 

training stage. For this purpose, we run simulations to 

generate different random data pairs of user words and 

corrupted codewords were independently generated for use. 

The SNR is used as one of the main parameters in 

simulations. For each SNR, three datasets are tested. Each 

dataset contains 3369 samples. The performance is 

evaluated with the bit error rate (BER), which characterizes 

the difference between the estimated user words and the 

original user words. The profile is illustrated in Fig. 5. 

 

Figure 5.  Performance of ML decoding. 

B. The Systematic Polar (8, 5) Code 

    This code is generated from the matrix presented in (3). 

 

B.1 Training 

    In this experiment, all parameters are the same as those 

used for the non-systematic case. The performance of MSE 

of training, validation, and testing are illustrated in Fig. 6. 

We note that the number of epochs is reduced from 16 to 9, 

a significant increase in training efficiency. Furthermore, as 

shown in Fig. 7, the index R is almost perfect. Accordingly, 

this code has been successfully trained by the FNN. 

 

Figure 6.  Mean square error (MSE) performance. 

B.2 Decoding Test 

    Similar to the non-sysemstic code, for each SNR, three 

datasets are tested. Each dataset contains 3369 samples. The 

profile of BER against SNR is illustrated in Fig. 8. 

Compared with Fig. 5, it is observed that the BER is 

significantly reduced in the low SNR regime. For example, 

at SNR = 5 dB, the BER in Fig. 8 is around ,106 3−  while 

in Fig. 5 the corresponding BER is about .105.1 2−  



 

 

 

Figure 7.  Scatter plots. 

 

Figure 8.  Performance of ML decoding. 

C. The Non-Systematic Polar (16, 8) Code 

    This code is generated from the matrix presented in (2). 

 

C.1 Training 

    In this experiment, all parameters are the same as those 

used for the Polar code (8, 5). The performance of MSE of 

training, validation, and testing are illustrated in Fig. 9. The 

training is stopped at the specified threshold with 17 epochs. 

As shown in Fig. 10, the training is successful. 

 

 

Figure 9.  Mean square error (MSE) performance. 

 

Figure 10.  Scatter plots. 

C.2 Decoding Test 

    The profile of BER vs. SNR is presented in Fig. 11. For 

each SNR, three datasets are tested. Each dataset contains 

3369 samples. It is similar to the profile of non-systematic 

Polar code (8, 5) as shown in Fig. 5. 

 

D. The Systematic Polar (16, 8) Code 

    This code is generated from the matrix presented in (4). 

 

D.1 Training 

    In this experiment, all parameters are the same as those 

used for the non-systematic case. The performance of MSE 

of training, validation, and testing are illustrated in Fig. 12. 

The training is stopped at the specified threshold with 12 

epochs. As shown in Fig. 13, the training is successful. 

 



 

 

 

Figure 11.  Performance of ML decoding. 

 

Figure 12.  Mean square error (MSE) performance. 

D.2 Decoding Test 

    Similar to the non-sysemstic code, for each SNR, three 

datasets are tested. Each dataset contains 3369 samples. The 

profile of BER against SNR is illustrated in Fig. 14. 

Compared with Fig. 11, it is observed that the BER is 

significantly reduced in the low SNR regime. For example, 

at SNR = 6.5 dB, the BER in Fig. 14 is around ,102 3−  

while in Fig. 11 the corresponding BER is about .105 3−  

V. CONCLUSION 

    This paper investigates the feasibility of applying the ML 

methodology to the error-correction procedure in the 

remote-control module integrated in compact IoT devices. 

In this study, we use the neural network (NN) to decode four 

small Polar codes: non-systematic (8, 5) and systematic (8, 

5), as well as non-systematic (16, 8) and systematic (16, 8). 

It is shown that, with an appropriately configured NN, the 

decoding can be well done. So those long iterative decoding 

approaches could be avoided in small IoT devices. 

 

Figure 13.  Scatter plots. 

 

Figure 14.  Performance of ML decoding. 
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