
Learning a Safe Driving Policy for Urban Area from Real-world Data

Adil Mahmud1 and Changcheng Huang2

Abstract— Driving safely on the urban roads is a major
impediment in achieving level 5 autonomy. To achieve this, two
main streams of approaches have been proposed: module-based
and end-to-end. Module based solutions try to solve the problem
by dividing the whole task of driving into separate modules
and solving each one at a time. On the other hand, end-to-
end approaches try to provide the control command directly
from the sensor data input, like what a human driver does.
Deep reinforcement learning (DRL) is one of the algorithm
families that has received much attention recently to achieve
end-to-end solutions. As this approach is challenging, almost
all the related works use simulator generated data for training
a policy network. However, synthetic data does not capture the
complexity, variability, realism, and diversity of the real-world
environment. A reinforcement learning (RL) policy trained
on synthetic dataset necessarily makes it unreliable in real-
world deployment. In this study, we propose an actor-critic
DRL model to learn a driving policy from a real-world urban
driving dataset. The policy enables the RL agent to keep
safe distance from the leading vehicle, follow traffic light, and
prevents the agent from going off-road. To optimize the policy
we use proximal policy optimization (PPO), a state-of-the-art
reinforcement learning algorithm. Simulation results show that
the agent learns some of the basic safe driving requirements
effectively.

I. INTRODUCTION

Autonomous or semi-autonomous driving has attracted
the research community, promising safer, cost-effective, and
scalable transportation[1]. Despite advancements, urban set-
tings remain a challenging focus of research due to complex
multi-agent dynamics, traffic rules, map topology, and the
need for scalability to new environments. While most of
the solutions to the driving tasks focus on achieving a
particular goal, which is quite plausible, grossly, they all
fall short of scaling to unknown or new environments [2].
This is the reason why most of the leading self-driving car
manufacturing companies aim for collecting as much data
as possible in new environments to train neural networks. It
might solve the generalization problem to some extent, but
it is costly and may not offer a comprehensive solution for
broader challenges.

The autonomous driving software systems can be cate-
gorized into two general groups: modular and end-to-end.
Modular system divides the task into a pipeline of separate
constituent modules that links sensory input to the control
output. Though the modular approach has been the focus

1A. Mahmud is with the Department of Systems and Computer En-
gineering, Carleton University, Ottawa, ON, Canada, adilroman at
cmail.carleton.ca

2C. Huang is with the Department of Systems and Computer Engineering,
Carleton University, Ottawa, ON, Canada, changcheng.huang at
carleton.ca

in the research community because of its flexibility and
adaptability, the end-to-end approach has seen a recent surge
due to its simplicity [1], [2], [3], [4].

To facilitate end-to-end driving, both imitation learning
(IL) and deep reinforcement learning (DRL) algorithms have
shown great performances. IL algorithms aim to mimic
human expertise by learning the way human driver drives
from real world data [5]. This is a very promising approach
but may work poorly in unknown environments, especially
while driving on roads with different statistics or geometry
compared to the dataset the model was trained on. We argue
that DRL can be a better candidate in this regard because,
with DRL, an agent learns the best action to take in a
situation, commonly known as environment in reinforcement
learning (RL) domain. This is very similar to a human driver
where the driver takes the next action based on what he/she
sees around. Human driver can subconsciously comprehend
the surroundings and take driving decision (accelerate or
brake, steer straight, left or right). If the environment can
be comprehensively described, DRL will be able to learn
the best action to take as well.

The initial demonstrations that used DRL to solve driving
task in an end-to-end manner have shown very encouraging
results [6], [7]. The authors in [7] are pioneers in applying
DRL to learn a driving policy, particularly focusing on
the lane following task. They used a single monocular
image as input to a convolutional neural network (CNN)
feature extractor which gave a feature vector conveying a
comprehensive understanding of the immediate environment.
This feature vector was provided to an actor-critic algorithm
for learning a lane following policy. Reference [8] achieved
the same goal of lane keeping as that of [7] but on a car
simulator for racing called TORCS. Reference [9] focused on
lane change strategies by using proximal policy optimization
(PPO), a popular deep reinforcement learning algorithm.
Similarly, [10] proposed a Deep Q Network (DQN) based
lane change decision making strategy. It can be noticed
from the discussion that all these works focused on a
specific driving goal instead of achieving a comprehensive
and generalized driving task on the road.

End-to-end approach is very appealing because of its sim-
plicity compared to modular approach, but it faces challenges
due to high dimensional inputs and unnecessary information
in the raw sensor data. Therefore, recent studies have pre-
ferred intermediate representation of data, e.g., perception
module’s output, instead of raw sensor data [3], [11], [12],
[13], [14], [15], [16]. However, all the mentioned works,
except [13], use simulator generated data for policy learning,
which could present challenges when implementing these



policies in real-world driving scenarios.
In this work we use Woven Planet Level 5 prediction

dataset[17], a large real-world urban driving dataset, to train
a driving policy by using PPO, an actor-critic DRL algorithm.
We vectorize the perceived environment and then transform
the representation into corresponding graph network. Finally,
we apply multi-head attention to the intended agent to extract
a feature vector that would encompass the interactions of the
agent with the surrounding vehicles and traffic elements. The
following points summarizes our contributions:

• This is one of very few works that tried real-world urban
driving dataset to train an RL algorithm for learning
driving policy.

• We developed a reward function incorporating simpli-
fied yet critical safe driving criteria, such as maintaining
safe distance and target speed, preventing collisions, and
obeying traffic signals, to evaluate naturalistic driving
actions taken by an RL agent, such as acceleration, brak-
ing, and steering movements, within the environment.

• We developed a simulator on top of the closed loop
simulator (simulated agent follows the predicted path
instead of the ground truth) provided by Woven Planet
(Lyft) [17] to incorporate all the vehicles for simulation.
Thus, each vehicle in a scene is a potential simulation
agent. This approach increases the number of training
samples to a greater magnitude.

II. LEARNING POLICY FROM REAL-WORLD DATA

Policy learning with DRL is an error and trial process
where the agent takes an action and the environment replies
with a reward. A key question in learning a driving policy
with DRL is whether it should be learned in a real-world
driving setting or a simulated environment. The prior option
is the most effective because the policy will be learned
directly on the road where the agent will drive eventually. A
very good example to support this claim can be found in [7],
where an agent successfully learns to follow a lane in a day
of training on an empty road. However, real-world driving
involves interacting with other road-participants. Deploying
such a learned policy to a road with other participants
would be catastrophic. The only viable solution is to train a
policy in a simulated environment to avoid risks during the
learning process. However, transferring the learned policy
from simulated to real world environment, know as sim-
to-real transfer, appears as another challenge[3], [4]. The
challenge is posed due to the significant differences in the
dynamics and characteristics between a real-world and a
simulated environment.

We argue that learning a driving policy from a real-
world dataset, instead of simulated data, has the potential to
significantly mitigate sim-to-real transfer problems. In fact,
simulated dataset helps build a robust policy by exposing the
agent to a richer and more exploratory data distribution so
that it can tackle as many situations as possible, but it lacks
in capturing complexity and nuances of the real-world. As
a result, a policy trained on simulated data has the potential
to a degraded performance in real-world environment. In

contrast, real-world data captures the dynamics of the real-
world environment and gives the flexibility of error and trial
learning if the policy is learned in a simulator. If a vehicle is
chosen from the dataset and allowed to simulate in a closed-
loop setting while following the RL framework, a policy
could be learned in the presence of real-world road-users.
By adhering to standard traffic rules, the agent will be able
to learn to navigate safely within the natural context.

III. ACTOR-CRITIC REINFORCEMENT LEARNING WITH
PPO

Reinforcement learning enables agents to learn optimal
actions by interacting with the environment to maximize
cumulative rewards. Actor-critic RL is one of the variants of
RL that has received much attention recently. It is a family of
RL algorithms that use both value (critic) and policy-based
(actor) methods. While the policy network learns to provide
the optimal actions, the value network helps measure how
good an action is. Proximal policy optimization PPO [18]
uses an actor-critic approach and has proven its efficiency in
handling complex environments while also being simple in
deployment. In this work we use PPO for policy learning.

PPO is known for its capability of balancing sample
efficiency, stability, and ease of implementation. It proposes
a clipped surrogate loss function that constraints the policy
from being changed too much compared to the previous
policy during training. This is achieved by using a simple
loss function as below, which is defined as [18]

LCLIP
t (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ)Ât)] (1)

where θ represents parameters of the policy function, Ê[...]
represents expectation over a finite batch of trajectories, rt(θ)
is the ratio of the probability of taking action at at state st in
the current policy divided by the old policy, as shown below:

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

Ât is the advantage function, which is a measure of how
much better or worse an action is compared to the average
action in a given state. The PPO algorithm uses fixed-length
trajectory segment and a truncated version of generalized
advantage estimation. This gives the following equation of
advantage function:

Ât = δt + (γλ)δt+1 + ...+ ...+ (γλ)T−t+1δT−1 (3)

where δt = rt+γV (st+1)−V (st), γ is discount factor, and
λ is a hyperparameter that controls the trade-off between bias
and variance in the estimate. The clipped objective function
in (1) can be further augmented by adding an entropy bonus
term to ensure sufficient exploration. Thus, the objective
function becomes

LCLIP+S
t (θ) = Êt[L

CLIP
t (θ) + c2Sπθ

(st)] (4)



vectorization
of the frames

graph representation
of the vehicles and

traffic elements

feature extraction for
target agnet

with multi-head
attention 

actor-critic 
network

Input observations:
Perception output
with map; consists

of a set of 
consecutive frames

Action:
acc/dec
and yaw

Value

next observations
Construct next observation:

change target agent features 
according to the action

Fig. 1. Schematic diagram of state-action-next state loop of the proposed
DRL system. A frame refers to an observed scene at a time, capturing
information from the road-participants and the road itself.

where πθ is a stochastic RL policy and S denotes the
entropy of the policy distribution πθ evaluated at state st.
Furthermore, if the actor and critic neural networks share pa-
rameters, the loss function should combine the loss surrogate
and a value function (represents expected cumulative reward)
error term, which is reflected in the following equation:

LCLIP+VF+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

VF
t (θ) + c2Sπθ

(st)] (5)

where c1 and c2 are coefficients, LVF
t is the squared-error loss

of the value function (Vθ(st)−V targ
t )2. For the complete PPO

algorithm, we suggest to consult reference [18].

IV. SYSTEM DESIGN

This section provides details of our proposed DRL system.
In a typical DRL system, an agent follows a policy to take
actions based on its current observation. The environment
provides a reward and a subsequent observation based on
the action taken. We start by providing a schematic diagram
in Fig. 1 that shows how a state-action-next state loop works
in our case to set up a context for the detailed explanations
on state, actions, and reward. The process starts by taking a
group of instantaneous intermediate representations, referred
to as frames in the dataset’s terminology or observations in
the context of reinforcement learning. These representations
depict the scene surrounding the vehicle under consideration,
known as the target agent. Inspired by the works in [19]
and [20], the intermediate representations are vectorized, and
then the traffic elements, such as vehicles, lane-lines, cross-
walks are transformed into graph structures. Subsequently,
a feature vector is generated by using multi-head attention
to capture interactions between the target agent and the
surrounding vehicles along with the traffic control elements,
such as traffic light status and crosswalks. This is how some
real-world observations are transformed into a RL state that
will be easier to be interpreted by the actor-critic network in
the next step. The actor network provides actions, which are
acceleration or deceleration, and yaw. On the other hand,
the value network assesses the performance of the actor
by indicating how favorable or unfavorable its actions are.
The following subsections provide descriptions on the state,
action and reward of the proposed DRL system.

A. State

This subsection illustrates the steps to prepare the state for
the proposed DRL system.

• Vectorization The representation of a state vector at
time t involves observation at time t and its three pre-
decessors, represented by Ot−3, Ot−2, Ot−1, Ot. Each
observation includes vehicles, and traffic elements like
lanes, traffic light status (red, green, or yellow), and
crosswalks. To vectorize these observations, we adopt a
method similar to [20], using points instead of vectors
as in [19]. Lane-line, crosswalk boundary lines, and
locations of vehicles are represented by coordinate
points.
Table I shows the list of features that describes each
element. The velocity of the target agent or any other
vehicle can be obtained from their locations in con-
secutive observations, if they are not provided in the
dataset. For example, to obtain the velocity of the target
agent at time t− 1, vt−1, we take the difference of its
positions in observations Ot−3 and Ot−2 and divide it
by the time difference between the two observations. As
a result, for each vehicle state we get velocities for three
observations: Ot, Ot−1, and Ot−2. Since the locations
of the target agent and other elements are known,
finding distances between the target agent and the traffic
element points and other vehicles are straightforward.
While representing the crosswalks and lane-mid lines,
we limit the number of points to 20, but this number can
be varied. The left side of Fig. 2 illustrates a vectorized
representation of a sequence of observations.

• Graph representation Similar to the approach pre-
sented in [20], we transform the vector representation
to a graph representation. The number of nodes in
the graph of an element is equal to the number of
points the element has in its vector representation.
Accordingly, each vehicles has three nodes, and the
crosswalks and lane-mid lines have twenty nodes each
(equal to the number of points used to represent the
lines). These graphs are called sub-graphs, which are
in turn part of a global graph as shown in Fig. 2.
The global graph is used to represent the interactions
among the elements in the scene. In the final step, we
apply multi-head attention to extract a feature vector
for the target agent that is expected to hold the latent
interaction features with the traffic participants and the
traffic control elements.

TABLE I
ELEMENTS AND THEIR FEATURES

Element Features
Target agent velocity_x (Vx), velocity_y (Vy),

yaw (Y )
Other vehicles velocity_x, velocity_y, Euclidean

distance to target agent
Lanes Dx, Dy: Distances (in x and y direction)

between points on the mid-line and the
target agent

Crosswalks Dx, Dy: Distances (in x and y direction)
between points on the crosswalk boundaries
and the target agent

Traffic light Traffic light status for each lane



Target agent

Neighbor agent

Lane midline 1

Lane midline 2

Lane midline 3

Crosswalk 1

Crosswalk 2

Vx, Vy,
d

Dx, Dy, tl

three nodes from
3 consecutive
frames (one

current frame and
two history

frames)

Vx, Vy,
Y

vectorization sub-graphs global graph 

Fig. 2. Vectorization and graph representation of a frame. On the left, each
element is represented by a set of coordinate points, where the feature set
for an element is provided inside a circle. In the middle, each vehicle and
road elements are presented as sub-graph, and on the right all the elements
and vehicles form a fully connected global graph. The global graph models
higher-order interactions.

• Feature extraction Feature extraction involves multiple
steps as shown in the left side of Fig. 3. The goal is to
discover an effective representation of the target agent’s
characteristics and those of its surrounding environment.
It takes element-wise sub-graphs as input for all the
elements present in the scene, and finally extracts a
feature vector for the target agent by applying multi-
head attention on the global-graph. Since each element
is represented as a set of points, they are treated as
point-features and a transformation is applied to them
following the method presented in [21].

B. Action

Since our goal is to design the system as naturalistic as
possible, we choose acceleration and yaw as the actions.
While driving, a human driver controls throttle, brake, and
steering. The throttle and brake controls acceleration and de-
celeration respectively, while steering controls yaw changes.
Both acceleration and yaw action variables are continuous
values ranging from -1 to 1. Negative acceleration signifies
deceleration. On the other hand, a negative yaw value in-
dicates left steering while a positive value represents right
steering. The predicted action values within the range [-
1,1] requires scaling to actual values. We determined the
maximum and minimum values for acceleration (and decel-
eration) to be approximately ±5.54 m/s2 and for yaw to be
approximately ± 45°, from the dataset. Further, the scaled
value was used in the unicycle kinematic model that gave us
the state value upon the predicted action.

C. Reward

The reward function should guide the target agent to drive
in a way a regular vehicle drives. The driving patterns of
regular vehicles are clearly street dependent. Vehicles will
drive differently on different streets. Two key factors that
decide the patterns are the target speed, ST and the safe
distance, ds between the target agent and the leading vehicle.
The safe distance is a function of the vehicle’s driving speed,

el
em

en
tw

is
e

su
bg

ra
ph

s
E 

* P

Em
be

dd
in

g
E 

* P
 * 

F

max
pool

el
em

en
tw

is
e 

fe
at

ur
e

ve
ct

or
s

E 
* F

po
in

t f
ea

tu
re

tra
ns

fo
rm

at
io

n

em
be

dd
ed

 fe
at

ur
es

E 
* P

 * 
F

sh
ar

ed

Tr
an

sf
or

m
ed

 fe
at

ur
es

E 
* P

 * 
F

best feature vector
 E * 1 * F

m
ax

pool

stacked best feature
vector

E * P * F

co
nc

at
en

at
ed

 fe
at

ur
e

ve
ct

or
E 

* P
 * 

2*
F

Li
ne

ar
 tr

an
sf

or
m

at
io

n
E 

* P
 * 

F

MLPs with Layer
normalization and

ReLU
F * F

point feature
transformation

environment

Critic

M
ul

ti-
he

ad
 a

tte
nt

io
n

1 
* F

Action

Actor

Reward
State

Fig. 3. Actor-critic DRL model with feature extraction steps. Each block
of feature extraction is self-explanatory, provided with specific dimensions.
E stands for the number of elements, P stands for the number of points
used to describe an element, F stands for the size of feature vector. The
output of Multi-head attention block is the target agent’s feature vector,
provided to the RL network.

vt, i.e., ds = f(vt), where s is the vehicle’s current speed.
This function has been established by various regulation
rules. The target speed varies depending on the situation. It
can be equal to the posted speed limit if there are no obstacles
or red traffic lights, or less than that otherwise. In the event
of an obstacle or a red traffic light, the instantaneous target
speed for a frame will depend on the current distance to
the obstacle or the stop line. This distance is known as
the stopping distance. In such a case, the target speed is
determined using kinematic laws and stopping distance.

It can be anticipated that most vehicles drive around
their target speed. Therefore, the reward function should
encourage learning algorithms to vary around the target
speed. However, vehicles are also required to maintain a safe
distance. The reward function should punish vehicles that are
getting too close. In addition to that, since we are allowing
the target agent to maintain a safe distance and the target
speed, it tends to change lanes when necessary. Therefore,
we must restrict the target agent from going outside the
road or to a wrong lane. Moreover, we need to restrict the
target agent from colliding with other agents. To this end,
we propose the following reward function:

R = min

(
d

ds
, 1

)
exp

(
− (s− ST )

2

β

)
+ Lr + Yr (6)

where d is the distance to the leading vehicle, Lr is lane
reward and Yr is the yaw reward. If d ≥ ds, a maximum
reward of 1 is allocated for the distance maintained, indicat-
ing a good selection of action that resulted keeping a safe
distance. In contrast, a value less than 1 when d < ds signals
that the target agent failed to keep a safe distance. The lane



reward is set to a high negative reward to discourage going
off-road, while yaw reward is the difference between the
predicted yaw and ground truth yaw value.

V. EXPERIMENT

In this section we are going to evaluate the proposed
method, specifically how it works in terms of keeping safe
distance from the leading vehicle, abstaining from collisions,
and going off-road.

A. Simulation Setup

We use Woven planet prediction dataset [17] to train the
driving policy. It contains real-world driving scenes from
urban routes located in Paolo Alto, California, USA, and
hosts a numerous number of real-world driving situations
with different degrees of complexity. The scenes include
driving in multi-lane traffic to complex intersections, with or
without traffic lights, and a variety of road geometry. While
driving on the selected routes, a fleet of vehicles, called
ego vehicles, tracked other vehicles, cyclists, and pedestrians
around, and monitored traffic light status. In our simulation
we only considered the vehicles and disregarded cyclists
and pedestrians. We call the vehicles agents. The length of
tracking information for agents, also known as the trajectory
length, varies as it was gathered by ego vehicles while in
motion. Therefore for simulation, we selected agents having
a minimum track record length of 30 frames, where each
frame is approximately equal to 0.1 second, according to
the dataset. This also means that the trajectory length of
a selected agent may be more than 30 frames. To ensure
consistency among agents, we selected 30 frames from the
beginning of each corresponding trajectory. In this way we
get a set of eligible agents to choose from in each episode.

At the beginning of each episode, we randomly select
one of the eligible agents – designated as the target agent.
Subsequently, we find all the agents within 35 meters radius
keeping the target agent at the center. Additionally, we
obtain crosswalk and lane locations from high-definition
(HD) map associated with the dataset. Furthermore, we
acquire the traffic signal state pertaining to each lane. These
features collectively constitute observations for the target
agent. During each interaction between the target agent and
the environment in the reinforcement learning loop, a set
of four consecutive observations are grouped together to
form a state, as described in section IV(A). Subsequently,
predictions are made for each frame starting from the fifth
frame in the first iteration, and continuing sequentially for
subsequent frames. Given that the trajectory length of a target
agent is 30 frames, we obtain 26 consecutive predictions in
each episode. Therefore, the episode length is equivalent to
26 frames.

The interactions work iteratively, where each iteration is
called a step. In each step, the RL policy takes the current
state from the environment, predicts actions, and the environ-
ment evaluates the actions by providing a reward along with
the next state. The next state is prepared by taking the target
agent’s predicted actions (acceleration/deceleration and yaw

TABLE II
SIMULATION PARAMETERS

Parameter Value
Episode length 26 Frames (= 2.6 seconds)
Learning rate 3 exp−4
Batch size 512
Number of epochs 10
Discount rate 0.8
Entropy coefficient 0.01

rate) into consideration. These actions are translated into
features like velocity, location, and yaw using the unicycle
kinematic model. The target agent then adopts the newly
forecasted location, while the remaining agents adhere to
their ground truth features.

In our work, we employed the Stable-Baselines3 [22] PPO
implementation. The simulation was conducted by using the
parameters in Table II.

B. Evaluation Metrics

We used the following metrics to evaluate the performance
of the proposed model.

• Distance_to_leading_vehicle. This metric
represents the ratio of actual distance to the leading
vehicle compared to the safe distance. The optimum
result would be 1 and a value close to 1 is considered
to be a good distance being upheld.

• Off_road_percentage. The frequency, expressed
as a percentage of episodes, the target agent goes
outside the permissible lane markings. This includes
instances where the agent goes outside the road bound-
aries or enters a lane designated for vehicles travelling
in the opposite direction.

• Collision_percentage. Percentage of episodes
collision happened between the target agent and its
neighboring agents. A collision is recognized if the
bounding boxes of the target agent and a neighboring
agent intersect to any extent.

 

steps 

m
ea

n 
re

w
ar

d 

Fig. 4. Mean reward over simulation steps. The reward plateaued after
approximately 2.5 million steps.



Fig. 5. Qualitative results demonstrating performance in two episodes. The upper row shows the first episode, and the lower row shows the second. Each
episode includes four Frames (0, 10, 15 and 25) with the target agent indicated by a circle. In the first episode, the target agent stops at a junction and
before crosswalk with a red light. In the second episode, the leading vehicle is stopped, and the target agent approaches and stops keeping a safe distance
from the leading vehicle.

TABLE III
ILLUSTRATION OF PERFORMANCE ENHANCEMENTS ON SAVED MODELS

ACROSS TIME

1 2 3 4 5 6 7 8 9 10
Dist_ratio .789 .861 .861 .872 .941 .963 .946 .954 .956 .961
Off_road
incidents
(%)

15 8 6 2 3 1 1 1 1 0

Collision
(%)

22 30 27 25 17 10 21 18 18 9

C. Results

The reward mean graph shown in Fig. 4 illustrates the
performance of the trained model over the course of more
than 4 million training steps. Specifically, the agent’s policy
is updated every 15,360 training steps, and an average reward
of 10 episodes is then calculated by evaluating the updated
policy. The policy update interval is a hyperparameter and
is determined based on the batch size and episode length in
our case. For clarity, the line has been smoothed. We can see
that after approximately 2.5 million steps, the reward reaches
a plateau.

To measure the effectiveness of the proposed system, we
provide results in Table III using the evaluation metrics men-
tioned in sub-section B across 10 saved checkpoints. These
checkpoints, captured at various intervals during training,
offer insights into the model’s evolving performance over
time. The results show excellent performance in the mean
distance to the leading vehicle, which gradually converges
to approximately 1. It indicates that the model effectively
learned to maintain a safe distance to the leading vehicle.
The off-road percentage steadily diminishes to 0, signify-

ing improved adherence to safe driving policy. While the
collision rate initially exhibits a high frequency, it gradually
reduces, though not to the extent to be considered as excellent
performance. The collision rate might be higher due to the
fact that we primarily focused on maintaining a safe distance
from the leading vehicle, and ignored the need to maintain
safe distances from potential vehicles in adjacent lanes or
rapidly approaching vehicles from behind.

Qualitative results are presented in Fig. 5 for two scenarios
where the agent successfully adheres to traffic rules. The
first scenario depicts the agent appropriately stopping at an
active red light, halting before the crosswalk. In the second
scenario, the agent maintains a safe distance from a leading
vehicle.

VI. CONCLUSION

In this study, we attempted a challenging task of devel-
oping a safe driving policy for urban areas by training an
actor-critic deep reinforcement learning model with real-
world data. This research stands out as one of the few
works in literature that tried learning a policy by using
deep reinforcement learning model on actual dataset, instead
of using a simulated one. Both qualitative and quantitative
results demonstrate the model’s effectiveness in maintaining
a safe distance from the leading vehicle and avoiding off-
road incidents. While our focus was solely on maintaining
a safe distance to the leading vehicle, the collision rate was
not much satisfactory and hence enhancements are neces-
sary, particularly by considering distances to the following
vehicles and vehicles in the adjacent lanes.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Professor
Halim Yanikomeroglu for generously dedicating his time and



expertise to review and provide valuable feedback on this
research paper.

REFERENCES

[1] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58 443–58 469, 2020.

[2] D. Coelho and M. Oliveira, “A review of end-to-end autonomous
driving in urban environments,” IEEE Access, vol. 10, pp. 75 296–
75 311, 2022.

[3] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp.
5068–5078, 2021.

[4] P. Cai, S. Wang, Y. Sun, and M. Liu, “Probabilistic end-to-end vehicle
navigation in complex dynamic environments with multimodal sensor
fusion,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.
4218–4224, 2020.

[5] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in IEEE Int.
Conf. on Rob. and Auto.(ICRA), 2018, pp. 4693–4700.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[7] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in Int.
Conf. on Rob. and Auto. (ICRA), 2019, pp. 8248–8254.

[8] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end
deep reinforcement learning for lane keeping assist,” arXiv preprint
arXiv:1612.04340, 2016.

[9] F. Ye, X. Cheng, P. Wang, C.-Y. Chan, and J. Zhang, “Automated
lane change strategy using proximal policy optimization-based deep
reinforcement learning,” in IEEE Intell. Veh. Symp.(IV), 2020, pp.
1746–1752.

[10] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-
making through deep reinforcement learning with rule-based con-
straints,” in Int. Joint Conf. on Neu. Net. (IJCNN), 2019, pp. 1–6.

[11] Y. Wang, J. Wang, Y. Yang, Z. Li, and X. Zhao, “An end-to-end deep
reinforcement learning model based on proximal policy optimization
algorithm for autonomous driving of off-road vehicle,” in International
Conference on Autonomous Unmanned Systems. Springer, 2022, pp.
2692–2704.

[12] J. Li, X. Wu, J. Fan, Y. Liu, and M. Xu, “Overcoming driving
challenges in complex urban traffic: A multi-objective eco-driving
strategy via safety model based reinforcement learning,” Energy, vol.
284, p. 128517, 2023.

[13] P. Maramotti, A. P. Capasso, G. Bacchiani, and A. Broggi, “Tackling
real-world autonomous driving using deep reinforcement learning,” in
IEEE Intell. Veh. Symp.(IV), 2022, pp. 1274–1281.

[14] H. Rathore and V. Bhadauria, “Intelligent decision making in au-
tonomous vehicles using cognition aided reinforcement learning,” in
IEEE Wireless. Comm. and Net. Conf.(WCNC). IEEE, 2022, pp.
524–529.

[15] P. Cai, H. Wang, Y. Sun, and M. Liu, “DQ-GAT: Towards safe and
efficient autonomous driving with deep Q-learning and graph attention
networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 11, pp. 21 102–21 112, 2022.

[16] T. Agarwal, H. Arora, and J. Schneider, “Learning urban driving
policies using deep reinforcement learning,” in IEEE Int. Intell. Trans.
Sys. Conf.(ITSC). IEEE, 2021, pp. 607–614.

[17] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain,
S. Omari, V. Iglovikov, and P. Ondruska, “One thousand and one
hours: Self-driving motion prediction dataset,” in Conference on Robot
Learning. PMLR, 2021, pp. 409–418.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[19] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska,
“Urban driver: Learning to drive from real-world demonstrations using
policy gradients,” in Conference on Robot Learning. PMLR, 2022,
pp. 718–728.

[20] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“Vectornet: Encoding HD maps and agent dynamics from vectorized
representation,” in IEEE/CVF Conf. on Comp. Vis. and Patt. Recog.,
2020, pp. 11 525–11 533.

[21] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3D classification and segmentation,” in IEEE Conf.
on Comp. Vis. and Patt. Recog., 2017, pp. 652–660.

[22] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus,
and N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html


