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Abstract—Network Virtualization (NV) has been proposed as
an enabling technology of a key value-added service for service
providers. While there are a very large number of publications
that have proposed various resource allocation algorithms for NV,
no effort has been made to estimate the performance of virtual
network embedding (VNE) algorithms based on analytical mod-
els. In this paper, to assess the blocking probability of virtual link
mapping, we propose a novel loss network model with Dynamic
Routing And Random Topology (DRART). Moreover, by com-
bining with some existing models, we can estimate the blocking
probability for VNE through a creative recursive process. Our
model can provide a benchmark for various VNE algorithms.
To fill the performance gap between existing resource alloca-
tion algorithms and our analytical model, we also propose a
distributed Genetic Algorithm (GA) based resource allocation
approach that can jointly allocate node and link resources. Our
simulation results show that our resource allocation approach
can achieve the performance as predicted by our analytical model
while meeting stringent online resource allocation requirements.

Index Terms—Network virtualization, virtual network embed-
ding, loss network model, analytical performance estimation.

I. INTRODUCTION

IN A VIRTUALIZED network architecture, traditional
Internet service providers are decoupled into service

providers and infrastructure providers. Service providers are
responsible for deploying and offering customized network
services to end users, while infrastructure providers are in
charge of maintaining and allocating physical resources to dif-
ferent service providers. Service providers generally deploy
and maintain customized end-to-end network services by leas-
ing from the substrate resources of multiple infrastructure
providers.

The application of NV leads to the question of how virtual-
ized resources should be realized by underlying infrastructure
providers. In order to rationally share the resources of the
infrastructure providers and maximize the revenues of ser-
vice providers, recent research work has made a great effort
to find effective solutions of resource allocation problems in
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NV. The general virtual network allocation problem is also
known as the virtual network embedding (VNE) problem. To
allocate a virtual network request (VNR) successfully, each
virtual node should be mapped into a substrate node where
the specific node mapping constraints can be fulfilled, and
each virtual link is supposed to be mapped into a substrate
path where the specific link mapping constraints have to be
satisfied.

VNE problems can be considered as online or offline prob-
lems. The offline problems [1] handle a set of static VNRs as a
one-time requirement, which is relatively easy to solve. Unlike
offline VNE, VNRs in online VNE problems [2], [3], [4]
arrive dynamically and stay in the network for a random
duration. The infrastructure provider does not know the VNR
information, such as arrival time, duration, and topologies
before the VNR arrives. In most real-life scenarios, VNE has
to be addressed as an online problem that requires an agile
and efficient allocation solution.

On the other hand, to our best knowledge, study on the
performance estimation of these VNE algorithms based on
analytical models does not exist. These algorithms have been
evaluated based on simulation results. It should be noted that
network topologies in real applications have been evolving
fast in the past decades, from traditional carrier networks,
to data center networks, and satellite networks. It is hard to
find a topology that can represent all applications. Random
topology was first adopted in [5] as a way to assess the perfor-
mances of VNE algorithms through simulation. All topologies
including NSF network and structured topologies such as lin-
ear and star can be considered as realizations of random
topology. By using random topology, performances are aver-
aged over all topologies, making results more objective and
comparable. Since [5], random topology has become popu-
lar for VNE performance evaluations [5], [6]. However, all
these evaluations are still simulation based. There are two
major problems with simulation-based solutions. One is that
they are highly dependent on the embedding algorithms used
and nearly all of the embedding algorithms can be trapped in
some sub-optimal solutions that may vary with the approaches
used (coordinated vs. uncoordinated), initial candidate selec-
tions and the setting of some hyperparameters. The other
problem with simulation-based approach is the random errors
inherent in the Monte-Carlo method [7]. Warm-up periods
can also cause bias. In view of generality and universal-
ity, an analytical model is required to serve as a reference
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for comparing different VNE algorithms under random
topology.

Recently, VNE is also motivated by some other state-of-
the-art research, such as unmanned aerial vehicles (UAVs) [8]
and data center migration [9]. UAVs play an important role
in supporting 5G and beyond 5G mobile networks. VNE has
the potential to effectively manage and enhance UAVs for the
upcoming generation of mobile networks by addressing man-
ual, time-consuming UAV network management. One of the
most challenging tasks in UAV network management is called
UAV dynamic deployment [10]. As its name indicated, the
resource allocation problems in the UAV environment highly
depend on the status of the UAV trajectory. Therefore, allocat-
ing the resource dynamically and assessing different allocation
algorithms become difficult issues in this case.

Data center migration is another area where VNE can be
used. Migration strategies have been a hot research topic for
achieving high availability. Managing the substrate resource
workload becomes an essential aspect in the cloud comput-
ing environment [11]. The effectiveness of these embedding
strategies highly depends on the performance of embedding
algorithms. On the other hand, to satisfy a data center’s
requirement for high availability, computer and communica-
tion failures have to be tackled fast and efficiently. These ran-
dom and unsuspected failures require the migration algorithms
to adapt to random and dynamic substrate topology.

Developing an analytical loss network model for VNE is
challenging since a blocking event (i.e., a VNE failure) may
happen at different levels. A blocking event may happen at the
substrate nodes/links level, virtual nodes/links level, and even
at the virtual network level. Furthermore, to map a virtual
link, there may exist multiple substrate paths with different
source-destination pairs in a substrate network. It is important
to select a path that can achieve load balancing and minimize
blocking. Allocating a virtual link becomes a dynamic routing
problem in random topology. To our best knowledge, there is
no loss network model incorporating the dynamic routing and
random topology requirements so far.

A mathematical model for estimating the VNE performance
under dynamic and random topology becomes both tough
and promising in light of the aforementioned issues. In
this paper, we propose a novel loss network model that
can predict the blocking probability of a virtual link with
dynamic routing and random topology. By integrating with
other existing models through an innovative recursive process,
we can predict the performance of VNE with high accu-
racy. The proposed loss network model can be considered
a performance benchmark for various VNE algorithms. We
also propose an online coordinated VNE solution using a
Genetic Algorithm (GA), which aims to map virtual nodes and
links jointly. As our simulation results will show our embed-
ding solution can approach the performance as predicted by
our analytical model better than existing representative VNE
algorithms.

We summarize our contributions as follows:
• We create a novel loss network model with Dynamic

Routing And Random Topology (DRART) to

Fig. 1. Mapping a VNR into an SN.

evaluate the blocking probability at the virtual link
level;

• We propose a new recursive procedure that integrates dif-
ferent levels for estimating the blocking probability of
VNE;

• To fill in the gap between the performance predicted by
our analytical model and the performances achieved by
various existing VNE algorithms, we develop a Genetic
Algorithm (GA) that can allocate virtual nodes and links
jointly. For the identification of infeasible mapping, we
design a new mechanism based on a two-color graph
coloring theory.

II. RELATED WORK AND BACKGROUND

In this section, we first introduce the related work of VNE
and loss network models. Then we give a brief introduction to
Genetic Algorithm (GA). Finally, we summarize the problems
that have not been solved by current research.

A. Virtual Network Embedding (VNE)

In a VNE problem, a substrate network (SN) and a vir-
tual network (VN) can be any topology such as lines, rings,
trees, meshes, etc. In this paper, we consider substrate links
and virtual links to be bidirectional. An example of VNE is
shown in Fig. 1. InP stands for the infrastructure provider. The
VNR as shown in Fig. 1 consists of three virtual nodes (A,
B, and C) and two virtual links (A-B, B-C). The dashed lines
indicate possible virtual node mapping solutions. Each virtual
link should be mapped into a substrate path between the node
mapping solutions.

There are four types of resource allocation optimization
strategies proposed for NV in recent years. Exact solutions
formulate VNE problems as ILP or MILP, bringing an expo-
nential run-time cost [12]. The exact solution proposed in [5]
aimed to save embedding cost by using the MILP model.
The paper [13] developed a multi-objective VNE model by
the means of a MILP formulation. This approach modified
the previous embedding MILP in [5] to provide an adaptive
VNE solution to deal with virtual node and link failures or
degradations. Although recently proposed exact solutions were
claimed to be the optimal solutions as a baseline for heuristic
solutions, these solutions allocated the VNRs based on cur-
rent residual resources without considering future VNRs. For
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such reason, the exact solutions hardly guarantee the global
optimal in the long run. This observation provides more space
for heuristic algorithms to play.

Heuristic solutions aim to increase placement efficiency as
well as improve global optimality. However, most of them
focus on specific scenarios [14], thus heuristic solutions are
hard to solve other similar problems. Generally, two-stage
heuristic VNE algorithms [15] involve a greedy node embed-
ding and a subsequent k-shortest path link mapping [16], [17],
or a ranking-based node embedding and again the k-shortest
path link mapping [18].

Metaheuristic solutions have been proposed recently to
improve the quality of the performance by escaping from local
optima as well to complete embedding in a reasonable time.
Previous research [19], [20] allowed improving the quality
of candidates to find near-optimal solutions. Therefore, it is
indispensable to tailor effective metaheuristic mechanisms to
enhance performance.

Reinforcement learning (RL) solutions adopt Markov
Decision Process as models to make decisions in the pro-
cess of interaction with the environment. Many research
papers [11], [21], discussing RL solutions, improved the map-
ping performance. However, it is challenging to apply RL
to an online resource allocation scenario. Specifically, train-
ing in RL is parametric-based, which is usually implemented
in a stationary environment. In dynamic environment, RL
requires training and building a model for each specific sce-
nario. As a result, RL has to handle a large number of models.
Therefore, the research of RL is confronted with computational
complexity problems.

Since VNE approaches handle the allocation for both
virtual nodes and virtual links, VNE could be separated
into two phases: mapping virtual nodes into substrate nodes
and mapping virtual links into substrate paths with multiple
connected substrate links. Uncoordinated VNE solves node
mapping and link mapping separately in an independent
way. This decomposition approach can simplify the algo-
rithmic complexity. However, the complexity is still NP-
hard. Moreover, Uncoordinated VNE approaches [16], [22]
might result in the situation that virtual neighboring nodes
are mapped onto the substrate nodes that are probably far
from each other. The long distance between substrate nodes
may lead to unexpected longer substrate paths and network
fragmentation.

On the contrary, coordinated VNE [23], [24] considered
the coordination between node mapping and link mapping.
Coordinated VNE has two categories: partial coordinated VNE
and fully coordinated VNE. Partial coordinated VNE can be
performed to map virtual nodes with the consideration of the
relation on link mapping in two separate stages. Alternatively,
full coordination of VNE can be achieved by solving the node
mapping and link mapping at the same time [25]. Most of the
previous research worked on partially coordinated solutions.
Even in some papers [26], [27], they claimed virtual nodes and
links were mapped in the same stage. However, [26] and [27]
solved virtual nodes and links alternately, which were not fully
coordinated solutions.

B. Loss Network Model

Loss network models are stochastic models, which study
the blocking behavior in all kinds of networks [28]. In this
section, we give a brief introduction to loss network models.

1) Generalized Erlang Loss Model: The original loss
model was first proposed by Erlang with an M/M/S queue.
Erlang loss model describes the blocking probability in a
system with S homogeneous servers where request arrivals
obey Poisson distribution with mean λ and exponentially dis-
tributed holding times with mean 1/μ. In the generalized
Erlang loss model, requests can have a set R of classes.
A class r request requires to hold Ar servers simultane-
ously with mean holding time 1/μr and arrives with rate λr .
Assuming the number of class r requests is nr , we define
�n = {nr : r ∈ R}. The set of feasible states F will be

F(S ) =

{
�n ≥ 0 :

∑
r∈R

Arnr ≤ S

}
(1)

The distribution of busy servers with multi-class requests
will be

Pg (�n) =
1

G(S )

∏
r∈R

(
λr
μr

)nr

nr !
, (2)

where

G(S ) =
∑

�n∈F(S)

∏
r∈R

(
λr
μr

)nr

nr !
. (3)

2) Open Loss Network With Fixed Routing: The general-
ized Erlang loss model can be extended to the generalized loss
station with multiple server types. Assume there are Sl servers
for server type l, where l ∈ L. A class r request requires Alr
servers simultaneously, for all l ∈ L. Therefore, the following
server constraint has to be met:∑

r∈R
Alrnr ≤ Sl , for all l ∈ L. (4)

In an open loss network, the customer requests arrive from
and depart to the external environment [29]. An open loss
network with fixed routing is equivalent to a generalized loss
station with multiple server types. Specifically, each link in
the open loss network corresponds to a server type in the gen-
eralized loss station. Therefore, the blocking probability of an
open loss network could be obtained from (2).

3) Jackson Network: Jackson network is a special class of
an open queuing network [30]. In a Jackson network, there
are S servers with infinite queues. Request arrival follows
the Poisson process and the service time follows the expo-
nential distribution. The state of the network can be defined
as the queue size of each server with a set of S-tuples:
(r1, r2, . . . , rS ). In a steady state, the states of individual
queues are independent. Therefore, the network state could
be expressed in a product form:

P(r1, r2, . . . , rS ) =

S∏
i=1

P(ri ) (5)
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C. Genetic Algorithm

Genetic Algorithm (GA) consists of four operations: initial-
ization, selection, crossover and mutation [31]. In general, GA
begins with a population that was generated at random [31].

When it comes to the GA algorithms in VNE,
research [32], [33] paid more attention to node mapping. A
GA approach for link mapping is far more complicated than
node mapping since the virtual link should be mapped into
a substrate path that consists of several connected substrate
links. Previous research [34] proposed a resource allocation
approach (MM-GAPS) based on GA. MM-GAPS solved the
link mapping stage with a splittable solution and used GA to
determine the splitting ratio of each virtual link. This novel
idea aimed to reduce link congestion by updating the splitting
ratio. The GA operations have to ensure each virtual link solu-
tion is a valid and connected path. One GA approach called
Path-Based Genetic Algorithm (PBGA) on link mapping was
proposed in [35]. With PBGA, all the GA operations were
based on substrate paths. It dramatically reduced the execu-
tion time with similar performance on acceptance ratio with
the baseline algorithm [5].

D. Problem Statement

There is little research on the analytical performance model
for VNE. When it comes to the loss network models with
routing, Barry and Humblet [36] investigated the blocking
probability with the effects of path length, switch size and
interference length in the optical networks. The closest related
work by Antunes et al. [37] designed a loss network with
fixed routing. However, a loss network model with fixed
routing cannot be applied to scenarios with dynamic routing
and random topology. Therefore, it is necessary to inves-
tigate an analytical loss network solution for the online
VNR allocation in a dynamic routing scenario with arbitrary
topology.

On the other hand, we found there is little research work-
ing on a fully coordinated solution of VNE. As we discussed
above, uncoordinated solutions and partial coordinated solu-
tions narrow the searching space of feasible solutions and may
miss the global optimum. To match our analytical model, we
propose a GA approach that can achieve a fully coordinated
solution. We apply the two-color graph coloring theory to
solve the mapping conflicts caused by the joint allocation of
virtual nodes and virtual links.

III. NETWORK MODEL

In this section, we elaborate on a general network model
used in this paper. Generally, in VNE problems, the input
consists of a variable number of VNRs, whereas the SN pro-
vides the physical resources in terms of bandwidth and CPU
capacity. Appendix C gives a list of notations.

A. Substrate Network (SN)

An SN is represented as a random weighted undirected
graph and denoted as Gs(Ns ,Es), where Ns is a set of sub-
strate nodes and ñs = |Ns | follows a probability distribution

PNs
with a maximum value Ms,n . n̄s = E(ñs) is the aver-

age number of substrate nodes. Es is a set of substrate links
and each pair of nodes have the probability Ps,l to form a
link es ∈ Es . ẽs = |Es | is the number of substrate links.
ēs = E(ẽs) is the average number of substrate links. Each
substrate node ns ∈ Ns is associated with a CPU capacity
value c(ns) that follows a random distribution Pc(ns) with a
maximum CPU capacity Cns and a location (xns , yns ) fol-
lowing some distribution PLns

(x , y) in a fixed area W. We
assume that each substrate link es between two substrate nodes
has a random bandwidth capacity b(es) following the dis-
tribution Pb(es) with a maximum bandwidth capacity Bes .
We also define a substrate path as a set of acyclic sub-
strate links that are connected sequentially. In addition, we use
Ps(ms ,ns) to represent a set of all substrate paths from node
ms to ns .

B. Virtual Network (VN)

Conventionally, a VN consists of a set of dedicated network
service boxes such as firewalls, load balancers and application
delivery controllers that are concatenated together to support
a specific application [38].

A VNR is represented as a random weighted graph, denoted
by Gv (Nv , Ev , ta , td ,D). Nv is a set of virtual nodes.
ñv = |Nv | follows a probability distribution PNv

with a maxi-
mum value Mv ,n . n̄v = E(ñv ) is the average number of virtual
nodes. The distance between a substrate node and the virtual
node is denoted by dis(loc(nv ), loc(ns )). In practice, there
are typically some limitations on which substrate nodes a vir-
tual node can map onto [5]. When we set the distance to very
large or infinity, it becomes agnostic of locations. Therefore,
the distance limitation makes the model more useful and gen-
eral. Ev is a set of virtual links and each pair of nodes have
the probability Pv ,l to form a virtual link ev ∈ Ev . ẽv = |Ev |
is the number of virtual links in the VNR. ēv = E(ẽv ) is
the average number of virtual links. ta is the arrival time of
a VNR, which follows a Poisson process with an arrival rate
λv . td is the duration of the VNR, which follows an expo-
nential distribution with a mean holding time τv . Each virtual
node nv ∈ Nv is associated with a CPU capacity require-
ment c(nv ) that follows a random distribution Pc(nv ) with
a maximum CPU capacity requirement Cnv and a location
(xnv , ynv ) following some distribution PLnv

(x , y) in the same
fixed area W. D is a fixed number representing the maximum
acceptable distance between a virtual node and its associated
substrate nodes. Each virtual node can only be mapped to one
substrate node located within the distance D, which is called
a candidate node for the virtual node. We assume each virtual
link ev between two virtual nodes has a random bandwidth
requirement b(ev ) following the distribution Pb(ev ) with a
maximum bandwidth requirement Bev . Each virtual link can
be mapped to a substrate path if the path connects the two
substrate nodes onto which the two virtual nodes are mapped
in the node mapping stage. The substrate path is called a
candidate path of the virtual link mapping. The selection of
a candidate node/path among available ones for a particular
node/link mapping depends on the mapping algorithm used.
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Fig. 2. The augmented graph of Fig 1.

C. Augmented Network

Inspired by [5], an augmented graph Gs′ = (Ns′ ,Es′)
is created for the substrate network Gs = (Ns ,Es). We
generate a meta-node, called μ(nv ), for each nv ∈ Nv . Then
we connect all candidate substrate nodes of nv ∈ Nv to
the meta-node through a bidirectional meta-link with infi-
nite bandwidth. We set Ns′ = Ns ∪ {μ(nv )|nv ∈ Nv} and
Es′ = Es ∪ {(μ(nv ),ns )|nv ∈ Nv ,ns ∈ Nc(nv )}. Nc(nv )
denotes the set of all candidate nodes for nv . Fig. 2 is the
augmented graph created for Fig. 1. In order to solve the
virtual node mapping and virtual link mapping coordinately,
generating an augmented graph is the first step.

D. VNE Mapping Constraints

As we talked about in Section I, A VNR is mapped suc-
cessfully when all the demand requirements of virtual nodes
and virtual links are satisfied. In this paper, we use gen-
eral constraints that have been applied to some previous
research [5], [35]. The virtual node mapping constraints
include the CPU capacity and a maximum distance radius D
of the VNR. The virtual link mapping constraint focuses on
the substrate link bandwidth.

E. Objective Function

In VNE problems, we use an objective function to mea-
sure if a VNE solution is an acceptable one. In our jointly
mapping algorithm, we aim to develop a function to evaluate
both node and link mappings together. The objective function
should consider all resource usage of a VNR as a whole, as
opposed to other heuristic mapping approaches [5] [16]. The
heuristic mapping approaches sequentially consider the vir-
tual nodes/links according to a ranking method. In (6), σ is
a small positive constant to prevent the zero denominators.
f iuv describes the total amount of flows from u to v for the
ith virtual link under a specific mapping scenario. And xmw

denotes a binary variable, which has the value 1 if the meta
link is activated shown in (8); Otherwise, it is set to 0. We use
function Re() and Rn () to indicate the current available band-
width and CPU capacity resources on a substrate link/node,
respectively. 0 ≤ αuv ≤ Re(euv ) and 0 ≤ βw ≤ Rn (ws)
are parameters to control the significance of load balancing
during the placement. M() is a function that maps a virtual
node or a virtual link to a substrate node or a substrate path.
M(mv ) = ws in (8) represents mapping a virtual node mv to
a substrate node ws . We define the objective function FNLP

in this paper in (6).

min FNLP =
∑

euv∈ES

αuv

Re (euv )−∑
i f

i
uv + σ

+
∑

ws∈Ns

βw
Rn (ws )−∑

mv∈Nv
xmwC (mv ) + σ

(6)

where,

f iuv = B(ev ), if euv ∈ M(ev ) ∪ ev ∈ Ev (7)

xmw =

{
1, if M(mv ) = ws (8a)

0, otherwise (8b)

Most of the previous solutions chose linear objective func-
tions to accelerate the optimization procedure. In fact, in a GA
algorithm, a non-linear objective function has similar comput-
ing complexity to a linear one. The paper [39] has shown
that a non-linear objective function outperforms a linear one
because a non-linear objective function is more sensible when
the remaining resources are scarce. With a non-linear function,
the value FNLP grows more quickly than a linear one when
network costs increase. Furthermore, Equation (6) is designed
to restrain the mapping in case the residual resource is lim-
ited. A non-linear objective function, such as (6), improves
resource utilization, since a small residual substrate resource
may cause resource fragmentation. Moreover, a small resid-
ual substrate resource is hard to be utilized for future requests
under the unsplittable mapping.

IV. PROPOSED ANALYTICAL MODEL

In this section, we propose a loss network model to esti-
mate the blocking probability of VNE. We first describe our
system models in three levels: the substrate node/link level,
the virtual link level, and the VN level. Finally, we discuss
the proposed recursive process for the estimation of average
load that integrates all levels together. To simplify notations,
we will omit some arguments of certain functions when the
context is clear.

A. Substrate Node/Link Blocking Probability

We start our loss model from the calculation at the sub-
strate node and substrate level. In this subsection, We describe
substrate link blocking probability calculation. Substrate node
blocking probability can be obtained exactly in the same way.

In most VNE simulation setups, VNRs arrive following the
Poisson distribution. We consider the same scenario as other
general VNE research. At the substrate link level, we can treat
arrivals at a substrate link as random samples from the Poisson
arrivals of the VN. Therefore, we assume that the arrivals at
the substrate link level still obey Poisson distribution with a
mean rate λs,l . We name λs,l as the offered load for a sub-
strate link. λs,l is not equal to the VNR arrival rate λv , since
a VNR is mapped into several substrate links instead of all
substrate links. We will discuss our approach to estimate λs,l
in Section IV-E.

The holding time of a request received at a substrate link
follows the same exponential distribution with the same mean
holding time τv as the VNR arrival.
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There is no existing way to calculate the blocking
probability when b(ev ) is a random real number. We found
that the generalized Erlang loss model [40] is the closest
one that can be used to approximate the substrate blocking
probability. The generalized Erlang model requires the capac-
ity of servers and the demand of requests to be discrete as
mentioned in Section II-B1. Therefore, we need to quan-
tize the bandwidth demand into a fixed number of classes
denoted as R. In this paper, we define the interval size of
each class as a constant number κ. Then the demand of band-
width can be treated as the different classes of requests in
the generalized Erlang model. We approximate each class
r: (b(ev , r), b(ev , r + κ)], 1 ≤ r ≤ R with one bandwidth
request br =

∫ b(ev ,r+κ)
b(ev ,r)

b(ev )dPb(ev ), which is the aver-
age bandwidth of the class. The probability that a request
has bandwidth br is Pr =

∫ b(ev ,r+κ)
b(ev ,r)

dPb(ev ). The arrival
rate within each class is λs,l ,r = λs,lPr . The load of
each class is ρs,l ,r = λs,l ,r τv . We also divide the band-
width capacity of a substrate link b(es) into U classes with
each class u:(b(es , u), b(es , u + κ)], 1 ≤ u ≤ U . Then
the bandwidth capacity of substrate links could be consid-
ered multiple classes of servers in the generalized Erlang
model. We approximate each class with one bandwidth capac-
ity bu =

∫ b(es ,u+κ)
b(es ,u)

b(es)dPb(es). The probability that a

substrate link has the capacity bu is Pu =
∫ b(es ,u+κ)
b(es ,u)

dPb(es).
At a specific time, a substrate link hosts hr requests with

bandwidth br . We define �h = (h1, . . . , hR) as a state that
includes all the number of different class requests. The set of
all feasible states that can be carried by a specific substrate
link with bandwidth capacity bu is shown in (9).

F(bu) =

{
�h ≥ 0:

∑
r∈R

brhr ≤ bu

}
(9)

According to the generalized Erlang loss model [40], the
average blocking probability of the substrate link is:

P
(B)
s,l =

∑
u∈U

Pu

∑
r∈R

(
1− G(bu − br )

G(bu)

)
Pr , (10)

where

G(bu) =
∑

�h∈F(bu )

∏
r∈R

ρhrs,l ,r
hr !

. (11)

Similarly, we can obtain the substrate node blocking prob-
ability P

(B)
s,n by replacing bandwidth with CPU capacity.

B. The DRART Model for Virtual Link Blocking Probability

In this subsection, we propose a model to estimate the
performance at the virtual link level. A virtual link mapping is
to find a substrate path that has enough remaining bandwidth
capacity at each substrate link to support the virtual link band-
width requirement. The virtual link mapping fails only when
all potential substrate paths are unavailable. In order to deter-
mine the blocking probability of a virtual link, we have to
solve sub-problems as follows:

• What is the probability that the specifically ordered sub-
strate nodes are connected as a path? In other words,
what is the probability that one path exists in a random
substrate network?

• How many paths are there between any source and des-
tination? What is the distribution of the number of these
paths?

• What is the blocking probability of one path with varied
path lengths?

First, we need to get the maximum number of potential paths
between any source-destination pair in an SN.

Lemma 1: For any source-destination pair in any substrate
network with ñs nodes, the maximum number of potential
paths Ke that have e links between the source and destination
nodes is shown in (12).

Ke =
(ñs − 2)!

(ñs − e − 1)!
=

i=e∏
i=2

(ñs − i) (12)

Proof: Starting from the source, the number of poten-
tial paths for the first hop is ñs − 2 because the number
of intermediate nodes except the source and destination is
ñs − 2. For the second hop, there are totally ñs − 3 links
available by excluding source, destination, and the first hop
node. For the (e)th hop, there is only one link available:
the destination. Taking a substrate network with 5 substrate
nodes: a, b, c, d , f . The maximum number of potential paths
K2 with 2 links between a and b should be (5− 2)!/(5− 2−
1)! = 3. The potential paths are a−c−b, a−d−b and a−f−b,
respectively.

Each SN can be considered as a sample from the random
graph Gs(Ns ,Es) as characterized by the substrate node dis-
tribution and the probability for any two nodes to form a link.
In order to get virtual link blocking probability, we have to
know which paths do actually exist for a source-destination
pair in a specific SN.

We assume that all substrate links are independent. Together
with the source and destination nodes, the e−1 substrate nodes
form e independent links. Given e−1 substrate nodes �ns,e−1 =
{ns,1, . . . ,ns,e−1}, the probability these nodes form a path in
the order given and with a source-destination pair is shown
in (13).

Pp,�ns,e−1
=

(
Ps,l

)e (13)

Lemma 2: For any source-destination pair in any substrate
network with ñs nodes, the probability that there exist exactly
ke paths with length e can be calculated by (14) from the
binomial distribution [41].

P(ke) = CKe
ke

(
Pp,�ns,e−1

)ke(
1− Pp,�ns,e−1

)Ke−ke
(14)

The binomial distribution is the sum of Ke independent,
identically distributed Bernoulli trials. In each Bernoulli trial,
we have two possible outcomes: if a source-destination pair
has a path with length e or not. Equation (14) then sums up
the probability that there exists ke paths out of Ke potential
paths.

Many paths may exist between a source-destination pair,
among which shorter paths are more favored for VNE due to
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the fact that shorter paths use fewer link resources. However,
paths between a source and a destination have more joint links.
If a path is blocked, other paths may also become inaccessible
since those paths may share the same blocked link due to the
fact they share the same source and destination nodes. As we
show in Section VI, selecting paths with joint links makes
blocking probability higher. In addition, if we consider link-
joint paths, the blocking probabilities of two paths may not
be independent due to joint links. It is challenging to evaluate
the correlation, especially in large substrate topology due to
the combinatory growth of the number of scenarios with joint
links.

We assume that the blocking probabilities of the link-
disjoint paths are independent in this paper. This assumption
is based on the assumption that the blocking probabilities of
substrate links are independent. This assumption is valid for
large and meshly connected networks. A similar assumption
was made in [36] for calculating blocking probability in optical
networks with fixed routing. If the substrate links are inde-
pendent, we can assume link-disjoint paths are independent
because there are no shared substrate links among link-disjoint
paths. We will further justify our assumptions in our simulation
results.

We now consider selecting candidate paths from link-
disjoint paths only. Before we look at the number of link-
disjoint paths that exist in a particular SN, we first think about
the maximum number of link-disjoint paths that may exist for
all SNs.

Theorem 1: For any source-destination pair in any substrate
network with ñs nodes, the maximum number of potential
link-disjoint paths that have e links is KI ,e = ñs − 2, where
2 ≤ e < ñs

2 + 1.
Proof: See Appendix A-A.
In the following discussion, we assume that the condition

2 ≤ e < ñs
2 +1 is always satisfied, which is typically the case

in real networks because the path length e tends to be small
for lower blocking probability. While the potential number of
link-disjoint paths was calculated in Theorem 1, we need to
know the number of link-disjoint paths that actually exist in a
specific substrate topology.

Corollary 1: For any source-destination pair in any sub-
strate network with ñs nodes, the probability that there exist
exactly ke link-disjoint paths with length e has the lower bound
as shown in (15).

PI

(
ke |KI ,e

) ≥ C
KI ,e

ke

(
Pp,�ns,e−1

)ke
(
1− Pp,�ns,e−1

)KI ,e−ke
(15)

Proof: See Appendix A-B.
Given the above path-based approach using (15) is

intractable, we will try to develop a link-based approach in
the following part.

Theorem 2: For any source-destination pair in any substrate
network with ñs nodes, the probability that there exist at
least ke link-disjoint paths with length e can be approximately
calculated by (16).

PI

(
k ≥ ke | KI ,e

) ≈ P̃I

(
ke |KI ,e

)2
P̌I

(
ke | KI ,e

)
, (16)

where

P̃I

(
ke | KI ,e

)
=

KI ,e∑
i=ke

C
KI ,e

i Ps,l
i(1− Ps,l

)KI ,e−i
,

and

P̌I (ke | KI ,e) =

L(ñs−2)∑
i=ke (e−2)

C
L(ñs−2)
i Ps,l

i(1− Ps,l)
L(ñs−2)−i

.

Proof: See Appendix A-C.
Corollary 2: For any source-destination pair in any sub-

strate network with ñs nodes, the probability that there exist
exactly ke link-disjoint paths with length e can be estimated
as (17).

PI

(
ke |KI ,e

)
= PI

(
k ≥ ke | KI ,e

)− PI

(
k ≥ ke + 1| KI ,e

)
(17)

Both (15) and (17) can be used to estimate the probability
that there exist exactly ke link-disjoint paths with length e.
Equation (17) is more accurate because it covers all selection
schemes. Now we move on to look at the probability that there
exist multiple link-disjoint paths with different lengths.

Corollary 3: For any source-destination pair in any sub-
strate network with ñs nodes, the joint probability that there
exist exactly �k = {ke , e = 1, . . . ,Em} link-disjoint paths can
be estimated as (18):

PI

(
�k |KI ,e

)
= PI (k1, . . . , ke |ñs)

≈ PI (k1)

e∏
j=2

PI

(
kj | kI ,j

)
, (18)

where

PI (k1) =

{
Ps,l , if k1 = 1
1− Ps,l , if k1 = 0

,

and

kI , j = KI ,j − k1 − k2 − · · · − kj−1.

Proof: Using chain rule, we have:

PI

(
�k |KI ,e

)
= PI

(
k1, . . . , ke |KI ,e = PI

(
k1|kI ,1

)
PI (k2|k1) · · ·

PI
(
ke |k1, k2, . . . , .ke−1

)

≈ PI (k1)
e∏

j=2

PI

(
kj | kI ,j

)
.

The last equation is derived by removing those paths that
have been used by shorter paths to simplify the calculation
of conditional probabilities.

Given now we know the distribution of available paths, we
next focus on calculating the blocking probability for a virtual
link.

We assume that the blocking events at each substrate link
are independent. Proof of (19) is straight by the fact that a path
is blocked if any link of the path is blocked. The independence
assumption is necessary to make the calculation tractable:

P
(B)
p, �ns,e−1

= 1−
(
1− P

(B)
s,l

)e
(19)
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The blocking probability for a virtual link depends on
the embedding algorithms used. We consider an embedding
algorithm that selects a path from maximum K existing link-
disjoint shortest paths with a maximum path length Em , which
is typically used as a benchmark algorithm for comparison.
Our approach can be extended to other embedding algorithms
if the algorithms are known.

Lemma 3: For any source-destination pair in any substrate
network with ñs nodes, under K shortest paths algorithm with
maximum path length Em , the paths can be identified as:

k̃e =

⎧⎨
⎩

ke , if ke ≤ K −∑
i<e ki

K −∑
i<e ki , if ke > K −∑

i<e ki > 0
0, if K −∑

i<e ki ≤ 0
, (20)

where

e ≤ Em .

Proof: This equation follows the definition of K shortest
paths algorithm with maximum path length Em .

It is interesting to know some statistics about these link-
disjoint paths.

Corollary 4: For any source-destination pair in any sub-
strate network with ñs nodes, under K shortest paths algorithm
with maximum path length Em , the average number of
link-disjoint paths utilized can be found in (21).

k̄(K , Em) =
∑
�k

Em∑
e=1

k̃ePI

(
�k |KI ,e

)
(21)

Corollary 5: For any source-destination pair in any sub-
strate network with ñs nodes, under K shortest paths algorithm
with maximum path length Em , the average path length of
available link-disjoint paths can be calculated by (22).

l̄(K , Em ) =
∑
�k

Em∑
e=1

k̃ee∑Em
e=1 k̃e

PI

(
�k |KI ,e

)
(22)

According to the link-disjoint paths distribution
PI (�k |KI ,e), Equation (21) and (22) calculate the expected
values of the number of link-disjoint paths and the path
length, respectively. We now move on to find the average
blocking probability of a virtual link.

Theorem 3: For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em , the
average blocking probability of a virtual link can be calculated
by (23).

P
(B)
v ,l (Em ,K ) =

Ms,n∑

ñs=2

∑

�k

⎡

⎣
Em∏

e=1

(
P
(B)
p, �ns,e−1

)˜ke
⎤

⎦

PI

(
�k |KI ,e

)
PNs

(ñs ) (23)

Proof: By assuming the blocking events are independent
among link-disjoint paths, (23) is based on the fact that a
virtual link is blocked if all its candidate paths are blocked.
Then (23) can be obtained by summing up all the link-
disjoint paths distribution PI (�k |KI ,e) over the distribution of
a substrate network PNs

(ñs).

Next, it becomes interesting to know the average path length
for accepted virtual link requests.

Corollary 6: For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em , the
acceptance probability of a virtual link at a given path length e,
when all paths with shorter lengths than e, is blocked can be
calculated by (24).

P
(A)
v ,l (e, K ) = P

(B)
v ,l (e − 1,K )− P

(B)
v ,l (e,K ) (24)

Proof: If a virtual link is blocked with path length e, the
virtual link must be blocked with path length e−1. Therefore,
the former is a subset of the latter one. Then, the difference
P
(B)
v ,l (e−1,K )−P

(B)
v ,l (e,K ) is purely the acceptance gain by

increasing maximum path length from e−1 to e, which means
the acceptance probability with path length e while all paths
with lengths smaller than e are being blocked. One of these
paths with length e is selected as the mapping path for the
virtual link following the shortest paths principle.

Corollary 7: For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em , the
average path length for accepted virtual link requests can be
obtained from (25).

l̄v ,l (K ,Em ) =

Em∑
e=1

eP
(A)
v ,l (e, K ) (25)

C. Virtual Node Blocking Probability

In this section, we start to find the acceptance probability
of a virtual node.

Lemma 4: The acceptance probability for a virtual node
mapping can be calculated as:

P
(A)
v ,n =

Ms,n∑
ñs=2

˜Nv,s∑
ñv,s=2

(
1−

(
P
(B)
s,n

)ñv,s
)
P
(
ñv ,s |ñs

)
PNs

(ñs),

(26)

where P(ñv ,s |ñs) is the conditional probability that there are
ñv ,s candidate nodes for a virtual node given that there are ñs
substrate nodes in the SN. Ñv ,s denotes the maximum value

of ñv ,s . P (B)
s,n is the blocking probability of a substrate node

as defined earlier.
Equation (26) came from the fact that the mapping of a

virtual node is accepted if any one of its candidate nodes is
not blocked and all substrate nodes are independent.

D. Blocking Probability for a VN

We now try to calculate the blocking probability for a spe-
cific VNR. We made our efforts to find the probability for the
existence of multiple link-disjoint paths connecting a source-
destination pair. Finding link-disjoint paths is an important
step because link-joint paths connecting a source-destination
pair tend to be overlapped very likely due to the fact that
link-joint paths share the same source and destination nodes.
The paths also have to support the same bandwidth require-
ment for each virtual link when being selected. Selecting
link-joint paths increases blocking probability significantly as
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illustrated later in our numerical results. The allocation algo-
rithms typically use link-disjoint paths by deploying variations
of shortest-path algorithms.

When we deal with a VNR with multiple virtual links,
these virtual links may be mapped onto substrate paths that
are partially overlapped. However, these overlaps cause fewer
problems because these links have different and independent
bandwidth requirements and virtual links in a VNR do not
share the same source and destination nodes at the same time.
Blocking events are less correlated among paths for differ-
ent virtual links. To make our analysis tractable, we assume
blocking events across all virtual nodes and link mappings are
independent. This assumption allows us to have a product-
form solution like Jackson networks, which greatly simplifies
our analysis.

Theorem 4: Assume a VNR with ñv = |N v | nodes and
ẽv = |E v | virtual links. Assume all virtual nodes and virtual
links are independent. Then the acceptance probability of the
VNR can be calculated as (27).

P
(A)
n (ñv , ẽv ) =

(
1− P

(B)
v ,l

)ẽv(
P
(A)
v ,n

)ñv
(27)

Proof: This is straight forward by independent assumption.
The reason that we could use the average probabilities P

(B)
v ,l

and P
(A)
v ,n instead of conditional probabilities in (27) is also

due to the independence assumption, which allows us to take
expectation operations on each term in (27) separately.

Let L(ñv ) =
ñv (ñv−1)

2 denote the maximum number of
virtual links that may exist given ñv virtual nodes. The average
blocking probability can then be calculated.

Corollary 8: The average acceptance probability for an
arbitrary VNR can be calculated as (28):

P̄
(A)
n =

Mv,n∑
ñv=2

L(ñv )∑
ẽv=1

P
(A)
n (ñv , ẽv )P(ẽv |ñv )PNv

(ñv ), (28)

where P(ẽv |ñv ) is the conditional probability that there exist
ẽvvirtual links given ñv virtual nodes in a VNR; and L(ñv )
is the maximum number of different links among ñv nodes.

The conditional probability using binomial distribution is
shown in (29):

P(ẽv |ñv ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
L(ñv )
ẽv

(Pv ,l)
ẽv (1− Pv ,l)

L(ñv )−ẽv ,

if ẽv > Lm(ñv )

1−
L(ñv )∑

l>Lm (ñv )

C
L(ñv )
l Pv ,l

l(1− Pv ,l)
L(ñv )−l

,

if ẽv = Lm(ñv )

(29)

where Lm (ñv ) is the minimum number of virtual links to
make sure that a VNR is actually connected without any
isolated nodes.

E. Estimating the Offered Load λs,l for a Substrate Link

At the beginning of Section IV-A, we mentioned that λs,l ,
the offered load for a substrate link, is not the same as λv ,
the VNR arrival rate. This is also true for the offered load

of a substrate node λs,n . In this section, we discuss how to
estimate λs,l , λs,n .

The offered loads λs,l , λs,n should include two parts, the
part that is blocked by the substrate node or link and the part
that is accepted. We call the part that is accepted and carried by
a substrate link as effective loads denoted as λe,l , λe,n respec-
tively. As we mentioned at the beginning, there are three levels
of blocking events that may happen: the substrate link/node,
the virtual link/node, or the VN. A VNR is blocked if any
virtual link or node is blocked. It is important to note that the
offered loads λs,l , λs,n should not include the loads blocked
by other links or nodes. Because even a substrate node/link
accepts this load, the substrate node/link still may not carry the
load. Therefore, we assume the VNRs that have been accepted
become the offered loads for the substrate link/node. It should
be noted that offered load is not the effective load for a spe-
cific node/link due to the fact the offered load may be rejected
by this node/link while being accepted by other links/nodes.
Following the above discussion, we have:

λs,l ≈ λv P̄
(A)
n

(
λs,l , λs,n

)̄
l
(
Em ,K , λs,l

)
ēv/ēs , (30)

and

λs,n ≈ λv P̄
(A)
n

(
λs,l , λs,n

)
n̄v/n̄s , (31)

where we emphasized that the network acceptance probability
and average path length for accepted virtual links depend on
the offered loads. With rising offered loads, P (A)

n (λs,l , λs,n )
and ēv (Em ,K , λs,l ) go down monotonically. Therefore, (30)
and (31) will converge through a recursive process.

V. PROPOSED COORDINATED MAPPING APPROACH

Most of the existing VNE algorithms are the so-called unco-
ordinated algorithms, where all virtual nodes are mapped first.
The mapped virtual nodes provide a source-destination pair
for the virtual link mapping stage. However, mapping vir-
tual nodes and virtual links jointly is likely to produce more
optimal solutions because joint mapping allows a virtual link
to try multiple source-destination pairs in the SN. Essentially
speaking, mapping virtual nodes and links jointly is sampling
the source-destination pairs from all possible combinations of
virtual node and virtual link mapping. While, uncoordinated
two-stage mapping only takes a subset of all possible com-
binations into account. Therefore, an uncoordinated two-stage
mapping can be vulnerable to getting a local optimum.

In this section, we implement a GA algorithm to solve VNE
problems with full coordination. As opposed to uncoordinated
algorithms, our virtual node mapping and virtual link mapping
are generated simultaneously in both the crossover procedure
and mutation procedure. Therefore, we can claim our genetic
solution encompasses all potential mapping combinations. In
the subsections that follow, we illustrate how we achieve full
coordination.

In our approach, a chromosome ci denoted by (32) repre-
sents a feasible VNE solution. Since ẽv indicates the number
of virtual links for a request, there are totally ẽv genes in a
chromosome. Each gene is defined as a path between two meta
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Algorithm 1 Coordinated VNE Mapping – GAOne
1: procedure GENERATING ORIGINAL PATH POOLS

Input: Gs output: Ps

2: Constructing static K-shortest path pool for each
source-destination based on substrate network Gs .

3: goto Initialize population

4: procedure INITIALIZE POPULATION

Input: Gv , Gs , Ps , M output: P
5: Generating G ′

s by using Gv and Gs

6: while actual_population_size < M do
7: for ev ∈ Ev do
8: Finding a feasible path for ev in G ′

s

9: putting the feasible solution in to P

10: actual_population_size++

11: goto Crossover

12: procedure CROSSOVER

Input: P output: child chromosomes c′
13: Selecting parent chromosomes (cs ,cr ) from P

14: Check node mapping conflicts
15: for each virtual link j do
16: Generating child gene g(M+1)j and g(M+2)j
17: goto Mutation

18: end for
19: goto Updating population

20: procedure MUTATION

Input: g , mutation rate output: Modified genes g ′
21: mutating g with a fixed mutation rate

22: procedure UPDATING POPULATION

Input: c′ output: Updated population P

23: Adding c′ into population
24: Updating population and limiting size to M
25: if terminating condition triggered then
26: return the fittest chromosome in P

27: else goto Crossover

nodes in the augmented network. Therefore, a gene in the aug-
mented network includes the virtual node mapping solution at
the first and last meta links. The intermediate links form a
substrate path that indicates a virtual link mapping solution.
A gene gij can be divided into two partial paths as (33): head
Hijk and tail Tijk , where k is the index of node in the gene:

ci =
{
gi1, gi2, . . . , gij , . . . , giẽv

}
(32)

gij =
[
Hijk ,Tijk

]
, ∀k ∈ (

1, dij
)

(33)

where,

Hijk = nij1,nij2, . . . ,nijk

Tijk = nij (k+1),nij (k+2), . . . ,nijdij

A. Initial Population

In GA, the first step is to initialize the population. The pop-
ulation P is composed of multiple chromosomes. To get the
initial population, we need to find multiple feasible mapping
solutions. In this step, we do not consider the performance of
these solutions. We only seek feasible ones.

We first randomly select a substrate node from the candidate
sets for each virtual node. In this step, all the first and last
links of genes are set in a chromosome. Next, we need to find
a substrate path to make each gene get connected. We choose
the shortest paths based on the hop count factor.

We identify K shortest paths for each source-destination
pair in the SN similar to [35]. Each path pool with a
source-destination pair is only dependent on the SN topol-
ogy. Therefore, the path pools can be used for all the online
requests as long as the SN topology is not changed. That is
to say, the path pools generated before the online requests
facilitate our online VNE procedure.

After we find a substrate path for each gene, a chromosome
is generated. We have to check if the chromosome is a feasible
one before putting the chromosome into the initial population.
We define a feasible solution if the allocated resources of the
SN can satisfy the requirements of the VNR.

If the chromosome is not feasible, we have to go back to
select and check another candidate chromosome again. This
process continues until a feasible chromosome is selected. In
some special cases, the random initialization process could
not find a feasible chromosome due to the exhausted available
resources. Instead of rejecting the request directly, we select
and stamp some infeasible chromosomes into the population.
Therefore, the request still has chances to enter crossover and
mutation operations to produce feasible child chromosomes.

B. Selection and Crossover

Before the crossover operation, we have to select two par-
ent chromosomes from the current population. We arrange the
selection scheme based on a random selection with replace-
ment same as [35]. Therefore, the parent chromosomes are
returned to the population after the crossover.

In the crossover operation, each gene in a parent chromo-
some crossovers with the corresponding gene in the other par-
ent chromosome. For example, the two parent chromosomes
are denoted by cs and cr . The parent chromosomes gener-
ate two child chromosomes, which are denoted by c(M+1)
and c(M+2). Each chromosome should exchange partial genes
with its counterpart through a crossover point. The crossover
point is generally a common node of parent genes. The com-
mon node is a node nsju in gsj equivalent to a node nrjv in
grj , where u and v are not the indices of source or destination
node. If there are more than one common node in parental
genes, one common node is selected to become the crossover
point. Apparently, such children generated in this pattern are
still valid paths. The child genes (34) and (35) are defined
as below:

g(M+1)j = Hsju ,Trjv (34)

g(M+2)j = Hrjv ,Tsju (35)

The special case happens when there is no common node
between two parent genes. In this case, a link is selected as
the crossover point in each parent gene. To make sure the
child’s gene is still a valid path, a partial path obtained from
the shortest path pool connects the child genes. For instance,
we randomly select link (nsju ,nsj (u+1)) as a crossover point
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for gsj , and then select (nrjv ,nrj (v+1)) for grj . A substrate
path between nsju and nrj (v+1) is chosen from the source-
destination path set Ps(nsju ,nrj (v+1)). Similarly, a substrate
path is picked from Ps(nrjv ,nsj (u+1)) to connect the partial
child genes. The results of the crossover operator without the
common node should be (36) and (37).

g(M+1)j = Hsju , pnsju ,nrj(v+1)
,Trj (v+1) (36)

g(M+2)j = Hrjv , pnrjv ,nsj(u+1)
,Tsj (u+1) (37)

C. Node Mapping Conflicts

After crossover, the child gene may contain loops, which
is an invalid path. Hence, each gene should have a valida-
tion check to remove loops. Subsequently, we construct the
child chromosomes from child genes. Each parent gene pair
can generate two child genes. In this step, the node mapping
conflict may happen when a virtual node is mapped into dif-
ferent substrate nodes in the same request. We propose a graph
coloring method to detect the node mapping conflict problem.

Definition 1: Under the condition that virtual node mapping
is unsplittable, each unique virtual node associated with some
virtual links in a chromosome can only be mapped to one
substrate node.

We call the chromosomes that satisfy Definition 1 as valid,
otherwise invalid.

Inspired by graph coloring theory, we define the specific
set of all virtual node mappings in a parent chromosome as
having one color. If two parent chromosomes have at least one
virtual node mapped to different substrate nodes, we define
the set of all virtual nodes in the second parent chromosome
that are mapped to different substrate nodes as having the
second color. If all the virtual nodes are mapped to different
substrate nodes with the two parent chromosomes, we call the
two chromosomes complete two-color parent chromosomes.
The nodes in a chromosome can have either the first color or
the second color. However, each node in a valid chromosome
can only have one color.

Lemma 5: If all the virtual nodes in the two parent chromo-
somes can be represented by one color, the crossover operation
will always generate two valid child chromosomes.

Proof: Because all the virtual nodes in the two parent chro-
mosomes have the same color, the crossover operation will not
cause any change to the color of each virtual node. Therefore,
after crossover, each node in the two child chromosomes will
still have one color, which means the two child chromosomes
are still valid.

Lemma 6: If the virtual nodes in the two parent chro-
mosomes have different colors, the crossover operation may
generate invalid children.

Proof: As shown in Fig. 3, complete two-color parent chro-
mosomes are in red and blue, respectively. After the crossover,
all neighboring virtual nodes switch colors. Therefore, a vir-
tual node will have different colors from all its neighbors and
all its neighbors must have the same color. neighbours with
the same colour cause node mapping conflict problems since
some virtual nodes may be mapped into two colors shown as
virtual node A in Fig. 3.

Fig. 3. Invalid child chromosomes generated due to the virtual node mapping
conflict.

Fig. 4. Child chromosomes are valid if the virtual request is a bipartite
graph.

Theorem 5: If the topology of a VNR forms a bipartite
graph, then any two valid parent chromosomes will always
generate two valid children after crossover operation.

Proof: We divide the virtual nodes in the VNR into the two
groups in the bipartite graph as shown in Fig. 4. We call the
virtual nodes in one group G1 nodes and the virtual nodes
in the other group as G2 nodes. Given Lemma 5, without
loss of generality, we assume the two parent chromosomes
are complete two-color chromosomes. Suppose all the nodes
in the first parent chromosome P1 have the color red and all
the nodes in the second parent chromosome P2 have the color
blue. Therefore, before the crossover, a red node in G1 will
always be connected to a red node in G2 and a blue node in
G1 will always be connected to a blue node in G2. After the
crossover operation, a red node in G1 will be connected to a
blue node in G2 with the first child C1 and a blue node in
G1 will be connected to a red node in G2 with the second
child C2. Because there is no direct link within each group,
the nodes in the same group will also have the same color and
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Fig. 5. Finding a bipartite subgraph using breadth-first search.

each node in a child will have one color only, which means
both C1 and C2 are valid child chromosomes.

Corollary 9: For a VNR with arbitrary topology, there
always exists a crossover scheme that will generate two valid
child chromosomes by applying the crossover operation to a
subset of virtual links in the VNR.

Proof: Apparently, a bipartite subgraph can be generated by
removing some links in a VNR with an arbitrary topology. A
breadth-first algorithm can be applied to construct a subgraph
with bipartite topology [42]. We can then generate two valid
child chromosomes based on Theorem 5. For example, we
have a VNR with 4 virtual nodes and 5 virtual links as shown
in Fig. 5. We first randomly select a virtual node as the source
node and color the source node with the red color shown as
node A in Fig. 5. Next, we color all the neighbors of the source
node with blue color. We remove the link if its two connected
nodes are in the same color. This process stops when all the
nodes have been colored. Then, we can get a bipartite subgraph
of the virtual request. We do not crossover these removed links
(the link B-C in Fig. 5). After the crossover operation, we add
those links back to the child chromosomes. The results are still
valid child chromosomes.

D. Mutation

Another core procedure of GA is mutation operation. To
avoid the solutions evolving to the local optimum, the muta-
tion operation comes out to jump out of the current searching
space. Each child gene has a small probability to be mutated
after crossover.

In our GA approach, we have to deal with two scenarios:
whether the two mutation points in a gene include a meta node.
If the mutation happens at two intermediate substrate nodes
in a child gene, we just replace the path between these two
intermediate substrate nodes with an alternative path in our
path pools. However, if one of the mutation points is a meta
node, the virtual node mapping is mutated too. Since the vir-
tual node may be connected by several virtual links, all child
genes indicating these virtual links should be mutated consis-
tently. Then, to make sure the child genes are still connected
substrate path, we have to find alternative paths to connect
the new virtual node mapping solution with previous adjacent
nodes for all these child genes.

E. Sorting Population & Synchronization

Now, we generated two child chromosomes. Then we update
the population by adding two child chromosomes. We measure

chromosomes using the objective function in (6). Only the best
M (population size) chromosomes survive in the updated pop-
ulation. The new generation starts again and goes back to the
selection and crossover operations. This procedure ultimately
stops when the maximum count is reached or there are no
different child chromosomes available. The best chromosome
becomes the final solution.

F. Convergence Analysis

Convergence analysis is essential for VNE problems, espe-
cially as the network scale increases. When the network
scales go up, there are more alternative paths available.
However, these extra paths tend to be longer. As shown
in (19), the blocking probabilities for longer paths go up very
fast. Therefore, it is not cost-effective to search these paths
for feasible solutions. In our proposed VNE approach, we
can leverage the maximum path length Em to control the
convergence time.

In addition, the maximum number of potential link-disjoint
paths that have e links is provided in Theorem 1. This theorem
also proves that the convergence time of our VNE approach
can be bounded.

VI. NUMERICAL RESULTS

In this section, we will compare the results of our analytical
model with the simulation results obtained with representative
VNE algorithms. The purposes of these comparisons are two
folds: 1) We made some assumptions about the independence
of certain random variables and some approximation in deriv-
ing (17) during our modeling process. We want to use the
simulation results to validate whether these assumptions and
approximations are reasonable and acceptable. 2) We want
to show the performance gaps between our analytical model
and existing VNE algorithms. Therefore, our analytical model
can serve as a benchmark solution. To fill the gaps, we com-
pare our analytical model with our fully coordinated approach,
called GAOne, which achieves a fully coordinated solution as
discussed in Section V. In the simulation, GAOne has two
strategies: using link-disjoint paths or using non-link-disjoint
paths. GAOne using link-disjoint paths is closer to our analyt-
ical models since our analytical model uses link-disjoint paths
as discussed in Section IV-B.

Our network analytical model as described in Section IV
calculates the blocking probability of the node mapping and
link mapping separately. However, as (28) shown, our analyti-
cal model gets the acceptance probability from the product of
the virtual node and virtual link acceptance probability. The
product form indicates that (28) includes all possible com-
binations of different virtual node mapping and virtual link
mapping. Therefore, the fully coordinated solution—GAOne
is comparable to our analytical model and the results of our
GAOne simulation should get converged to our analytical
model.

We also compare our analytical model with other existing
VNE algorithms as listed in Table I. The compared algorithms
we chose are based on the performance-oriented and speed-
oriented aspects. In other words, the criteria we used to select
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TABLE I
COMPARED VNE ALGORITHMS

algorithms for comparisons are the best in VNR acceptance
ratio or the fastest in the execution time. Specifically, we
selected G-SP [16] for comparison because it uses the short-
est path algorithm for link mapping, which is widely used by
other metaheuristic algorithms as mentioned above, and also
because G-SP is considered the fastest algorithm due to its
simplicity. We selected D-ViNE and R-ViNE [5] for compar-
isons because they are considered to be a benchmark due to
their MILP-based approaches for both node and link mapping.
We have demonstrated that the performance of our algorithm
is either close or better than D-ViNE and R-ViNE. A rein-
forcement learning based solution MCTS [43] is chosen for
comparisons. MCTS maps node mapping and link mapping
in separate stages with partial coordination by introducing
the Monte Carlo Tree Search algorithm [44]. We also chose
two GA algorithms in [35]: Segment-Based Genetic Algorithm
(SBGA) and Path-Based Genetic Algorithm (PBGA). SBGA
and PBGA are two-stage solutions. They focus on virtual link
mapping solutions. We expect that our GAOne can have bet-
ter performance than SBGA and PBGA due to the coordinated
mapping strategy.

In the simulation, we assume the same topology distribu-
tions in our compared algorithms and our analytical model.
We start with the description of the scenario setup and then
discuss numerical results obtained from both our analytical
model and simulation of GAOne.

A. Environment Setups

Our proposed performance analytical model aims to esti-
mate the performance of a VNE algorithm under general
environments. To get numerical results, we have to set up
a specific environment. In this paper, we use a general
environment setup, which is the same as papers in [5], [35].

We chose random topology because most recent studies [5],
[11], [15], [33] on VNE have been tested on random topology.
Our paper follows the same assumption on random topology as
those studies. There are good reasons to use random topology.
As it is well-known, one of the core features of SDN is its
centralized control plane, which enables more dynamic and
sophisticated routing algorithms. However, the performance
of a VNE routing algorithm is highly dependent on substrate
topology. A star topology, for example, can make all embed-
ding algorithms perform more or less the same due to lack
of alternative routes. On the other hand, a full-mesh topology
can cause significant differences among different algorithms. A

more objective evaluation of a VNE algorithm is to get a statis-
tical average across the performances under random topology.
Developing an analytical model for a specific topology is not
efficient although it may be easier to develop because it is hard
to be generalized to other topologies. For example, suppose
we want to show performances for four different topologies,
we have to develop four different analytical models, which
becomes quite cumbersome, and their results are harder to
interpret for getting general conclusions. The selection of those
topologies is also subjective and needs lots of justification.
Our goal here is to compare different VNE algorithms under
all topology scenarios. The statistical average of random topol-
ogy provides a more objective evaluation for VNE algorithms.
Our goal is to provide an analytical benchmark for compar-
ing VNE algorithms under all topology scenarios as stated in
Section I.

Instead of generating a random number of substrate nodes
for each SN, we generated SNs with a fixed number of nodes
50. To make the SN random, we generated the links using the
Waxman model with parameters α = 0.5 and β = 0.2. The
capacity of a link b(es) is generated with a uniform distribu-
tion Pb(es) ranging from 50 to 100. Each substrate node has a
CPU capacity value c(ns) that follows a uniform distribution
Pc(ns) ranging from 50 to 100 and a location (xns , yns ) with
PLns

(x , y) following uniform distribution in a 25×25 grids
of a square area W.

In the Waxman model, the probability of any two nodes
forming a link depends on their distances. This kind of local-
ity structure is useful if physical locations are important in
some deployment applications. We use an average probability
in place of the distribution in this paper because we focus on
general performance instead of specific deployment scenarios.
The average probability of a link between two nodes is shown
as follows:

Ps,l = E[p(ds)] = E

[
αe

− ds
βDm

]

=
1

X 2Y 2

∫
W

αe
−
√

(x2−x1)
2+(y2−y1)

2

βDm dx1dx2dy1dy2,

(38)

where ds is the distance between two substrate nodes (x1, y1)
and (x2, y2), Dm denotes the maximum distance between
any two nodes. In our cases, we set X = Y = Dm = 25.
To introduce randomness, we randomly generated three
SNs in our simulation. Therefore, there are C 50

2 = 1225
number of source and destination pairs in one substrate
network.

We had to generate a very large number of VNRs for
each SN to get steady-state results. On average, we generated
around 18,000 VNRs for each SN and each load, which was a
very time-consuming process. Specifically, we generated ran-
dom VNR requests following the Poisson processes with λv
ranging from 4 to 8 requests per 100-time units. Each request
required a holding time, which was exponentially distributed
with an average of τv = 1000 time units. We conducted simu-
lations for each specific scenario over a period of 50,000 time
units.
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The distribution of the number of virtual nodes in a VNR
PNv

followed a piece-wise uniform distribution between 2 and
9, i.e., from 2 to 4, each happened with the probability 9/32,
from 5 to 9, each happened with the probability 1/32. The
reason for this specific distribution was to emulate the real
scenarios where we tend to have a larger number of smaller
requests. D, the maximum distance between a virtual node and
its associated substrate node, is set to 10. Each virtual node
nv ∈ Nv is associated with a CPU capacity requirement c(nv )
that follows a uniform distribution Pc(nv ) between 0 and 20
and a location (xnv , ynv ) following the same uniform distribu-
tion as PLns

(x , y) in the same fixed area W. Each virtual link
ev between two virtual nodes has a random bandwidth capac-
ity b(ev ) following the uniform distribution Pb(ev ) ranging
from 0 to 50. The existence of a virtual link is generated by
the Waxman model with Pv ,l= Ps,l .

To find P(ñv ,s |ñs) in (27), we need to know the distribution
of the substrate nodes. Since the substrate nodes are uniformly
distributed in the area W. Let V be the mapping area for a
virtual node, in which all substrate nodes are located within
distance constraint D. Given the square area W, V depends on
where a virtual node is located. The probability that a substrate
node is in area V could be calculated as:

P
(
ñv ,s |ñs

)
= C ñs

ñv,s

(
V

W

)ñv,s
(
1− V

W

)ñs−ñv,s

, (39)

where

V =
∫min(xnv+D , X )
max(xnv−D , 0)

∫min

(

ynv+
√

D2−(xns−xnv )
2, Y

)

max

(

ynv−
√

D2−(xns−xnv )
2, 0

) dxnsdyns .

In our model, the value of Em is a major factor contribut-
ing to the computing complexity. The complexity increases
dramatically with increasing Em due to the number of com-
binations in �k . In our simulation, we found that there was
very little gain when Em was beyond 6. Therefore, we set
Em to 6 to ensure accuracy while maintaining an acceptable
complexity in both simulation and analytical settings.

Similarly, we found the performance improved very lit-
tle when K was larger than 7 with Em = 6. To reduce
the computing complexity, we set K = 7 for both simula-
tion and analytical settings. In the simulation of GAOne, a
dynamic candidate path pool was maintained for each source-
destination pair with a maximum number of paths in the pool
set to K = 7. The purpose of maintaining dynamic path pools
was to increase path diversity with a genetic algorithm. This
dynamic pool realizes our random topology assumption.

The average number of link-disjoint path lengths is 3.23
(see (22)). In our simulation, the average link-disjoint path
lengths for each source-destination pair in the initial shortest
path pools are 3.35. The small difference indicates that our
analytical model captures the distribution of the topologies
well. We further discuss the path lengths that are averaged
over all dynamic path pools in Section VI-B2.

B. Simulations on Our Analytical Model

We compare our analytical model with GAOne at three
levels: substrate link level, virtual link level and VN level.

Fig. 6. Average effective link load over arrival rates.

Fig. 7. The substrate link blocking probability over arrival rates.

1) Results at the Substrate Link Level: At the substrate
link level, both effective substrate link load and substrate link
blocking probability are interesting metrics. The two metrics
depend on each other. In our setups, the offered loads only
changed in λv , the distributions of holding time and band-
width requirements do not change. Therefore, we use arrival
rates as a measurement of loads.

In our analytical model, the effective substrate link load
λe,l could be acquired from the offered substrate link load
λs,l , which is calculated in (30). We have:

λe,l = λs,l ×
(
1− P

(B)
s,l

)
. (40)

In our simulation, the effective substrate link load was rel-
atively easy to collect. We averaged the number of requests
that have been admitted and carried by substrate links overall
substrate links and all SNs. As shown in Fig. 6, the results are
very close at different VNR arrival rates and justify that (30)
is accurate.

Another metric we measured at the substrate link level was
the substrate link blocking probability. In our model, we cal-
culated the substrate link blocking probability P

(B)
s,l by (10).

When it came to the simulation, we followed the PASTA [45]
property and averaged the blocking events across all sub-
strate links and all SNs for all virtual link requests at a load
level. PASTA stands for Poisson Arrivals See Time Average,
which is a well-known property in queuing theory. As shown
in Fig. 7, the maximum difference, which happens at arrival
rate 4, is around 5%. The simulation results of our proposed
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Fig. 8. Average path lengths from analytical model and simulation.

Fig. 9. Virtual link blocking probability over arrival rates.

VNE algorithm approach our analytical model as the sub-
strate link becomes busier. This observation is likely caused
by the number of VNRs in the simulation. For each sub-
strate topology, the number of VNRs doubles from 12,000
to 24,000 when the arrival rate rises from 4 to 8. The simula-
tion becomes more accurate as VNRs increase. This result
explains why the biggest difference occurs with an arrival
rate of 4.

Due to our large substrate network structure, this differ-
ence in the substrate link blocking probability actually does
not sufficiently reflect the virtual link blocking probability.
Specifically, when a virtual link gets blocked, all the potential
substrate paths of this virtual link are blocked. The difference
in the substrate link blocking probability is cancelled out by
the great number of possible paths available in a large substrate
network. This claim is supported by Fig. 9.

2) Results at the Virtual Link Level: We first compare the
results of average path length for accepted virtual links as
shown in Fig. 8. The results in Fig. 8 are consistent with
the results shown in Fig. 7. The average path length gets
longer when the substrate link gets congested. Furthermore,
the average path length goes down a little bit as the load
goes up for our analytical model. The simulation results are
nearly constant. In our analytical model, the candidate paths
did not change with the load as defined in (22). When the
load increased, the average path length actually selected for
accepted virtual link requests decreased as defined in (25)
because longer paths were more likely to be blocked. In

Fig. 10. VNR acceptance ratio over arrival rates.

our simulation, the average path length of the dynamic can-
didate path pools increased with increasing load, while the
fact that shorter paths were more likely to be selected for a
given path pool was still true. The overall effect made the
average path length stay roughly the same with increasing
load.

In our analytical model, the virtual link blocking prob-
ability can be obtained by (23). We followed the PASTA
property to estimate virtual link blocking probability in simu-
lation. Specifically, we accumulated the number of virtual links
that were blocked and the number of virtual links requested
across all VNR and all substrate topologies. We then esti-
mated the virtual link blocking probability using the ratios of
the two aggregated counts. Fig. 9 shows the results of both
the analytical model and simulation, which match each other
very closely. The results justify that our DRART model is
accurate enough to capture the blocking probability of virtual
links.

3) Results at the VN Level: Now, we compare the final
VNR acceptance probabilities. As we discussed earlier, select-
ing a path from link-disjoint paths for mapping a virtual
link can achieve better performance compared to select-
ing paths without considering link-disjoint paths. In Fig. 10,
the acceptance ratio of the compared algorithms is the
average values over arrival rates from 4 to 8 per 100-
time units. The acceptance ratio is measured by the ratio
of the number of successfully mapped VNRs and the
proposed VNRs.

We calculated our simulation results with a 95% confidence
interval using a batch-mean method, which revealed an aver-
age range of less than 0.8%. To enhance the clarity of the
figure, we have omitted the confidence interval portions in
Fig. 10. We first compare simulation results using link-disjoint
paths (GAOne link-disjoint) and simulation results using non-
link-disjoint paths (GAOne non link-disjoint), with the same
Em = 6 and K = 7. As shown in Fig. 10, the results for
link-disjoint paths are consistently better than the results for
non-link-disjoint paths.

Fig. 10 also shows our analytical results in comparison with
simulation results. We can see that our analytical results are
very close to the GAOne simulation results with link-disjoint
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Fig. 11. The VNR acceptance ratio converging process.

paths. This result confirms that the independence assumptions
we made in Section IV-B are acceptable. Another obser-
vation is on our GAOne algorithm, our GAOne has a far
better performance compared with other related algorithms.
This result indicates the efficiency of the GAOne algorithm
and also implies that our non-linear objective function can
generate more efficient solutions. Moreover, the results verify
the benefits of the jointly mapping strategy.

In Section IV-E, we talked about why we require a recursive
procedure to estimate the average offered load of a substrate
node/link. To verify the correctness of a recursive procedure,
we should prove its convergence. In Fig. 11, we show the
acceptance ratio of a VNR P

(A)
n (λs,l , λs,n ) in (30) and (31)

getting converged after several iterations. We observe that
when the arrival rates get higher, the system gets busier. In
consequence, more iterations are required before the system
gets steady.

VII. CONCLUSION AND FUTURE WORK

We have created a novel DRART model for evaluating the
blocking probability at the virtual link level. Moreover, we
have designed an integrated approach that adopted a recursive
procedure among three levels of VNE models. Our numer-
ical results justify that the model we created is accurate
and can provide a benchmark for various VNE algorithms.
Moreover, our GA approach achieves full coordination by
mapping virtual nodes and links jointly. The comparison
between our analytical model and our GA approach also vali-
dates our assumptions and approximations are reasonable and
acceptable.

Our DRART has wide applications and can be used in many
scenarios as mentioned earlier. An analytical model for satel-
lite networks is a good extension of our DRART model. A
low earth orbit (LEO) satellite network [46] is a dynamic and
large-scale network that provides numerous services. The soft-
ware defined networking (SDN) architecture can help satellite
networks to have a centralized view to deploy various rout-
ing protocols. An analytical model is required to estimate
the performance of different routing strategies and provide
a fair comparison. Similar to the scenarios covered in our
DRART model, a satellite network also has random topol-
ogy and dynamic routing due to the constant movements of
satellites.

Fig. 12. A feasible scheme for link-disjoint paths between a source-
destination pair.

As the network size varies based on the specific applica-
tion, further research could explore our VNE approach in the
context of larger networks.

APPENDIX A
PROOF OF THEOREMS

A. Theorem 1: The Maximum Number of Potential
Link-Disjoint Paths Between Any Source and Destination

Since each path has to traverse one of the intermediate nodes
for e ≥ 2 and we only have ñs − 2 intermediate nodes, the
maximum number of link-disjoint paths for the first hop and
last hop is ñs − 2.

Next, we show a selection scheme that can indeed find ñs−2
link-disjoint paths for the intermediate hops.

First, we note that the maximum number of different links
that connect two of the ñs − 2 intermediate nodes is L(ñs −
2) = (ñs − 2)(ñs − 3)/2. Each node can have at most ñs − 3
links with intermediate nodes. Intermediate nodes are indexed
from 0 to ñs −3. We then select links to construct paths using
a scheme that is illustrated in Fig. 12. Following the schema,
we select links (i , (i + 1)mod(ñs − 2)) in the second hop.
In the jth hop, where j ≤ e − 1, we select links (i , (j − 1 +
i)mod(ñs − 2)).

Despite the simplicity, the above-mentioned scheme is a
feasible scheme, as we show below. We start with node 0 as an
example. In the second hop, node 0 is connected to node 1 and
node (ñs − 3) (i.e., node 4 in Fig. 12) because node (ñs − 3)
is connected to node (ñs−3+1) mod (ñs−2) = 0 according
to the above selection scheme as shown in red dashed links in
Fig. 12. At the jth hop, node 0 is connected to node (j−1) and
node (ñs − j − 1) because node (ñs − j − 1) is connected to
(ñs − j − 1+ j − 1)mod (ñs − 2) = 0 according to the above
selection scheme. Due to the cyclical structure of the selection
scheme, if (ñs − j − 1) > (j − 1), each link associated with
other intermediate nodes is also used once. If j ≤ e − 1, where
e < ñs

2 + 1, each intermediate link is used once. Therefore,
the scheme is a feasible scheme.

Under the above scheme, the paths:

{(s , i), (i , (i + 1)mod(ñs − 2)), . . . ,

(i + j − 2, (i + j − 2 + j − 1)mod(ñs − 2)), . . . ,

(i + e − 1− 2, (i + e − 1− 2 + e − 1− 1)mod(ñs − 2)),

((i + e − 1− 2 + e − 1− 1)mod(ñs − 2), d)},
0 ≤ i ≤ ñs − 2 form ñs − 2 link-disjoint paths because each
path contains unique links as illustrated in Fig. 12.

Authorized licensed use limited to: Carleton University. Downloaded on May 22,2024 at 17:55:04 UTC from IEEE Xplore.  Restrictions apply. 



1064 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

TABLE II
LIST OF ACRONYMS

TABLE III
LIST OF NOTATIONS

(Continued)

B. Corollary 1: The Lower Bound of Link-Disjoint Paths
Between Any Substrate Nodes

From Theorem 1, we know that there are at most KI ,e =
ñs − 2 link-disjoint paths. In the proof of Theorem 1, we
identified a specific selection scheme that has exactly KI ,e =
ñs − 2 potential link-disjoint paths.

Under this specific scheme, the probability that there exist
ke paths is C

KI ,e

ke
(Pp,�ns,e−1

)ke (1− Pp,�ns,e−1
)KI ,e−ke based

on binomial distribution, where C
KI ,e

ke
is the number of

combinations.
It should be noted that there are other selection schemes that

have link-disjoint paths different from the KI ,e paths identi-
fied in the proof of Theorem 1. For example, if we switch
the link selections of any two hops in the scheme identified
in the proof of Theorem 1, we get KI ,e link-disjoint paths
that are different from but partially overlapped with those in
the scheme identified in the proof of Theorem 1. Finding the

TABLE III
(Continued) LIST OF NOTATIONS

link-disjoint paths under various selection schemes is a signif-
icant challenge because a) the number of selection schemes
can be very large and complex; b) paths between different
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selection schemes can be partially overlapped making estima-
tion of probability difficult. However, we can have the lower
bound in (15).

C. Theorem 2: Estimating the Number of Link-Disjoint Paths
Between Any Source-Destination Pair

For all possible schemes, in order to have at least ke existing
link-disjoint paths, the following conditions must be satisfied:

• The first hop must have at least ke links that actually
exist. From binomial distribution, we have:
P̃I (ke | KI ,e) =

∑KI ,e

i=ke
C

KI ,e

i Ps,l
i (1− Ps,l )

KI ,e−i .
• Similarly, the last hop must have at least ke links that

actually exist with the same condition as above.
• The intermediate hops must have at least ke(e − 2) link-

disjoint links existing out of all potential links L(ñs −
2) = (ñs − 2)(ñs − 3)/2 among the ñs − 2 intermediate
nodes, from binomial distribution again, we have:

P̌I

(
ke | KI ,e

)
=

L(ñs−2)∑
i=ke(e−2)

C
L(ñs−2)
i Ps,l

i
(
1− Ps,l

)L(ñs−2)−i .

Combining the above three results and noting the fact that
the existences of all substrate links are independent, we can
get (16).

APPENDIX B

See Table II.

APPENDIX C

See Table III.
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