
)(XI A )(YI A
Network

X
Network

Y)(XI A )(YI A
Network

X
Network

Y

Mapping Bandwidth to Quality of Service 
An Importance Sampling Based Traffic Engineering Approach 

Benjamin Zhong Ming Feng+, Changcheng Huang+, Mike Devetsikiotis*, Yanick Champoux# 
+Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada 

*Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, U.S.A 
#Department of Research and Innovation, Alcatel, Ottawa, Canada 

 
 
 

Abstract— This paper proposes a new traffic engineering 
approach: Importance Sampling based Traffic Engineering 
(ISTE). ISTE can map the bandwidth of a traffic flow to the 
Quality of Service (QoS) it can receive within a network. The 
proposed ISTE approach does not require extensive knowledge of 
the network internal details thus making it applicable to most 
large and complex networks. It can carry out the end-to-end QoS 
analysis of a network or carry out the performance analysis of a 
single network node. Even if there are multiple congested nodes 
in the network, the ISTE approach remains effective. This paper 
will show the ISTE approach, under self-similar [1] [2] traffic 
model, is capable of calculating the changes in the network QoS 
(e.g. Probability of Buffer Overflow) with respect to the changes 
in the bandwidths of the ingress network traffic flows. In the 
scenarios where several ingress traffic flows influence the QoS of 
the network, a more specialized technique called ISTE 
Alternating Twisting (ISTE-AT) is proposed. ISTE-AT makes the 
proposed ISTE approach even more powerful. 
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I.  INTRODUCTION 
Network Quality of Service (QoS) has been a popular 

research topic in the recent years [3]. QoS is usually specified 
in terms of packet lose ratio, delay, delay jitter, utilization, etc. 
Since the packet loss in a network is mainly due to buffer 
overflow; therefore, this paper focuses on the probability of 
buffer overflow in a network.  

In traffic engineering, it is key to know how the bandwidth 
of a traffic flow maps to the QoS it receives. Knowing the 
change in a network’s QoS with respect to a change in the 
bandwidth of an incoming traffic flow is extremely helpful in 
optimizing the performance of a network to achieve its target 
QoS. Existing approaches, such as effective bandwidth [4], are 
applicable only to single network node and quickly become 
intractable with an end-to-end network path. 

This paper uses the bandwidth (the mean rate) of the 
ingress traffic as the quantity to be mapped to the network QoS 
(the probability of overflow). The Importance Sampling based 
Traffic Engineering (ISTE) approach provides a simple and 
fast mapping of the bandwidths for the ingress flows to the 
network QoS. This mapping is effective in end-to-end network 
performance optimization, even if there are multiple congested 
nodes in the network. Under self-similar traffic model, the 

simulation results will show the ISTE approach is capable of 
accurately predicting the changes in the QoS if the bandwidth 
changes. For scenarios where the network probability of 
overflow is influenced by the bandwidths of more than one 
traffic flow, the ISTE-Alternating Twisting (AT) approach is 
proposed to handle such situations. 

The rest part of the paper is organized as follows:  

Section II is the overview of the Importance Sampling 
concept and its classical application. Section III explains this 
new concept of Importance Sampling based Traffic 
Engineering. The simulation framework and the simulation 
results of this paper are outlined in Section IV.  Section V 
covers the special technique ISTE-AT. Finally, Section VI 
draws the conclusions of this paper. 

II. IMPORTANCE SAMPLING IN RARE EVENT SIMULATION 
We start with the concept of Importance Sampling[5] and 

its classical application before moving on to the new ISTE 
approach. 

Figure 1.  Network Event Occurences Under Different Input 

As shown in Figure 1, the input random process X(t)            
(denoted using X), with a mean value of v, represents the 
ingress network traffic. X(t) is the amount of traffic sent at time 
t in units of  bytes, packets, or cells.  Let x denote the random 
sample/trace x(t) of the input process X.  

When the input process X is applied to the network, the 
event of our interest (the event of packet loss, the event of 
buffer overflow, or the event of delay time violation) does not 
occur frequently. Define a set A such that A = {w: an event of 
interest such as buffer overflow}. IA(x) is a function that returns 
1 if Ax ∈  and 0 if Ax ∉ . The expectation of IA, Ex{IA(X)}, 
is the probability of the event occurrence when the network is 
under the input process X. This expectation can be calculated 
using the Monte Carlo [6] Estimator: 
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In equation (1), x(i) denotes the trace  x(i)(t) of X generated 
on the i-th replication run. N is the total number of replication 
runs executed. At the end of i-th replication run, if the event of 
interest has occurred, IA(x(i))  is set to 1, else, it is set to 0. 

The Monte Carlo estimator works only if every sample 
point is independent from each other.  However, since this 
paper uses the self-similar traffic model, there is a strong 
correlation between the samples. To overcome this issue, 
instead of executing one long simulation run, several 
independent replication runs are executed, thus making the 
occurrence of event A independent in each replication. Thus, 
the probability of event occurrence can be calculated by taking 
the average number of replications with the event occurrence.  

Because of the rare occurrences of the event when the 
network is under the input process X, many replication runs are 
needed to capture enough occurrences in order to compute the 
probability of event occurrences. This usually results in long 
simulation time. 

If the mean of the input process X is increased to vo, a new 
random process Y is created. The amount of change, |v-vo|, is 
called the twisted amount (m*). Let y denote the random 
sample/trace y(t) of the input process Y.  

  Assume the network is under the input process Y, and 
there are more event occurrences. It will require less replication 
runs to collect sufficient number of event occurrences. This 
change of the input process mean value to make the events 
occur more frequently is called “twisting”. However, we are 
still only interested in the event occurrences when network is 
under input process X. This is where Importance Sampling 
comes in.  

Importance Sampling theory [5]states that: 
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where Equation (2) is an alternative way to calculate the 
probability of event occurrences when the network is under 
input process X even though we have applied the input process 
Y instead.  Equation (2) is also called the Importance Estimator. 

In equation(2), y(i) is the trace of the input process Y on the 
i-th replication run. L(i) is the likelihood ratio calculated for the 
i-th replication run. At the end of the i-th replication run, if the 
event of our interest has occurred, IA(y(i)) is set to 1 , otherwise 
to 0. Because the event occurs more frequently now, we require 
less replication runs to calculate the probability of event 
occurrences when the network is under input process X. This is 
how Importance Sampling reduces the simulation time of the 
rare event simulation. 

L(i) is called the likelihood ratio since it is the ratio between 
the distributions of the two input processes, X and Y. The 
calculation of L(i) will require the sample trace x(i) along with 
input process parameters (mean, variance, correlation 
coefficients, etc.). In this paper, we use the self-similar Fractal 
Gaussian Noise (FGN) process for X and Y. The formula for 
the likelihood ratio of the FGN processes can be found in [1].  

For traffic engineering applications, the input traffic model is 
typically given. For online congestion control applications, 
traffic parameters can be estimated based on captured traces. 

The two estimators (Monte Carlo Estimator and Importance 
Estimator) are trying to find the sample means of two random 
variables, IA(x) and IA(y)L(y), respectively. To know the 
accuracies of the estimators, the variances of those samples 
means can be calculated. 

For the Monte Carlo Estimator, the variance [7] is: 
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For the Importance Estimator, the variance is: 
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A large normalized variance implies a great degree of 
fluctuations in the sample mean value, which indicates the 
result from the point estimator is “noisy” and unreliable. 
Normalized Variance will play an important role in the ISTE-
AT technique. 
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Figure 2.  Importance Sampling in Rare Event Simulation Summary 

Figure 2 summarizes the Importance Sampling operation. 
The twisted input process (Y) is applied into the network 
instead of the original input process (X). The event occurrence 
trace and the twisted input processes trace are recorded from 
the network. The captured traffic trace and the twisted amount 
are then used to calculate the likelihood ratio. The measured 
probability of event occurrences is adjusted using the 
likelihood ratio to find the probability of event occurrences 
when the network is under the original input process (X). 

III. IMPORTANCE SAMPLING BASED TRAFFIC ENGINEERING 
When Importance Sampling is applied in rare event 

simulation, we know the value of v (the mean value of the 
original input process X) and we try to find a vo (the mean 
value of the twisted input process Y) that will make the event 
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occur more frequent. ISTE is the “reverse” of this operation. 
We start with vo and change the value of v. 

Instead of treating the current input to the network as the 
original input process (X), we treat it as the twisted input 
process (Y). In another word, we assume the current input is the 
result of the twisting of some “original” process we do not 
know yet. Our goal is to create different “original” processes 
and predict the probabilities of overflow when these processes 
are applied to the network. In this paper, we let the probability 
of buffer overflow be the QoS of interest, thus, we let the event 
of buffer overflow be the event of our interest. The ingress 
traffic flows are treated as the network inputs; as a result, Y will 
produce more overflows in the network than X since vo is 
greater than v. 

The only thing different between the twisted input (Y) and 
the original input (X) is their mean value and the difference is 
the twisted amount (m*).  By trying different values of m*, we 
can actually “create” a number of possible “original” processes.  

Equation (2) calculates the probability of buffer overflow if 
the original input (X) is applied. Because the current input to 
the network is treated as the twisted input process (Y), IA(yi) is 
the event occurrences currently in the network. These 
occurrences can be easily recorded, thus, the IA(yi) term in (2) is 
fixed. N is the number of independent replication runs 
executed. It is also easily recorded and therefore the N term in 
(2) is also fixed. The only variable term left in (2) is L(i). The 
likelihood ratio is a ratio between the two distributions of X 
and Y. The only thing different between the two distributions 
are their mean values, and the difference is the twisted amount 
(m*). Therefore, the likelihood ratio is a function of the twisted 
amount, which in turn implies the probability of overflow, 
when the original input (X) is applied, is also a function of the 
twisted amount.  

As mentioned before, different values of twisted amount 
represent different original input processes (X), each with a 
different mean value. Equation (2) is calculating the network 
probability of overflow when a traffic flow with a specific 
mean rate/bandwidth is applied to the network. This is how the 
ISTE approach provides a mapping of the bandwidth (ingress 
traffic mean rate) to the QoS (Probability of Overflow) of the 
network. 

As we have shown, the ISTE approach does not require the 
internal details of the network. It only requires the capturing of 
the event occurrences currently in the network and the traces of 
the current input processes. This makes ISTE ideal for large 
and complex networks.  

The event of interest in the ISTE approach could be a buffer 
overflow of a specific node, an end-to-end network path, or a 
VPN, etc. Thus, the ISTE approach could be used for end-to-
end network QoS optimization as well as single network node 
performance analysis. 

 

 

 

 

 

Figure 3.  Importance Sampling Based Traffic Engineering Summary 

Figure 3 is a graphical view of the ISTE approach. We start 
with the capturing of the event occurrences currently in the 
network and the trace of the current network input. By setting 
the twisted value (m*) to 0, the Importance Estimator becomes 
a Monte Carlo Estimator [6] and gives the current probability 
of overflow in the network. We then try different values for the 
twisted amount (m*(1), m*(2), m*(3),…), thus we will calculate 
different probabilities of overflow (P(1),P(2),P(3),…)  
corresponding to network probabilities of overflow under 
different inputs each with different mean values  (v(1), v(2), 
v(3),…). The Importance Sampling theory promises that when 
those input processes are applied to the network, the 
probabilities of overflow will be the probabilities we have 
calculated. 

IV. SIMULATION 
Figure 4 is the network topology used in verifying the 

effectiveness of the ISTE approach. It consists of a tandem 
queue, two traffic sources with traffic split after the first queue 
and traffic merge at the second queue.  
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Figure 4.  Network Topology 

This topology may be simple but all the complex network 
topologies are some combination of this topology. Traffic 
Source A models the main ingress network traffic flow while 
source B models the background traffic flows from other 
sources in the network.  

The Lindley equation [8] is used to model the queue 
behavior. 
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Assume time slot based measurement is used, under the 
Lindley equation, the queue size depends on the difference 
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between the instantaneous incoming traffic rate (Xk) at time 
slot k and the queue service rate ( µ ). At the end of each 
replication run, we check if the queue size has exceeded the 
buffer size. If the buffer size has been exceeded, that 
replication run is considered as a replication run with a buffer 
overflow event. 

After the ISTE approach calculates the different 
probabilities of overflow if the mean rate of incoming traffic 
flow is reduced by different amounts, a simulation run is 
executed for each reduction and a Monte Carlo Estimator is 
used to measure the actual probability of overflow after the 
reduction has been made.  The measured result is compared 
with the calculated result to verify the bandwidth to QoS 
mapping is correct. 

Because the self-similar traffic model is used, each traffic 
source has a Hurst parameter. The Hurst parameter indicates 
the degree of self-similarity for traffic flows that exhibit long 
range dependency. The larger the Hurst parameter, the more 
bursty the traffic is. More bursty traffic source usually 
generates more faulty events in the network than non-bursty 
traffic source. 

95% confidence intervals are plotted in the graphs. Here are 
some notations for reading the graphs for our simulation 
results:B1:Size of buffer in Queue 1 (units/sec). B2:Size of 
buffer in Queue 2 (units/sec). C1: Service rate in Queue 1 
(units/sec). C2:Service rate in Queue 2 (units/sec).H1: Hurst 
parameter of traffic source A. H2:Hurst parameter of traffic 
source B. R1: Percentage of traffic entering Queue 2 from 
Queue 1. R2: Percentage of traffic entering Queue 2 from 
Source B. IS: ISTE, Probability of Overflow Prediction. MC: 
Monte Carlo Simulation, Actual Probability of Overflow. 

As shown in Figure 5, the predictions made by ISTE are 
very close to the actual probabilities of overflows, when the 
bandwidth of the ingress traffic flow has been reduced by 
different amounts, measured by the Monte Carlo simulations. 
Therefore, ISTE’s mapping of bandwidth (traffic source mean 
rate) to the network QoS (Probability of Overflow) is very 
accurate. 
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Figure 5.  Probability of Buffer Overflow 

The scenarios are configured such that there is congestion 
in both Q1 and Q2 at all time. As it can be seen, the ISTE 
approach is still effective.  Many of the existing analytical 
approaches have to make the assumption that there is only a 
single static congested point in the network. This shows that 
ISTE is more practical than those other approaches. For more 
simulation results, see [9] 

V. ALTERNATING TWISTING 
While testing the ISTE approach, there were some 

scenarios in which the ISTE approach did not work well. They 
are the scenarios where the background source B generates so 
much traffic that the network overflows are caused by both 
source A and source B. This has made the prediction by 
twisting only source A more noisy, as shown in Figure 8. 
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Figure 6.  Overflow Due to Both Traffic Sources 

This phenomenon is understandable because source A did 
not cause most of the overflows in the network in the first 
place. Importance Sampling does not help when the twisted 
process has little or no relationship with the event of interest. 

A special technique, Alternating Twisting (ISTE-AT) is 
developed and ISTE-AT is able to solve this issue. 

ISTE-AT is based on the following observation: When we 
twist the traffic source which is responsible for the events of 
the buffer overflows, its normalized variances increase much 
slower than the normalized variances increase when we twist 
the traffic source which is NOT responsible for the buffer 
overflow as shown in Figure 9. 
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Figure 7.  Normalized Variance Comparison 

Therefore we can say that, when the normalized variance of 
the twisting becomes too large or too “noisy”, it means that,  
after the mean rate of the source being reduced to that level, the 
source is no longer the dominating (responsible for the network 
overflow) source.  

113

Authorized licensed use limited to: Carleton University. Downloaded on October 6, 2008 at 14:56 from IEEE Xplore.  Restrictions apply.



Twist then
Reduce bandwidth Twist then

reduce bandwidth

Twist then
reduce bandwidth

Twist then
reduce bandwidth

Network

Twist then
Reduce bandwidth Twist then

reduce bandwidth

Twist then
reduce bandwidth

Twist then
reduce bandwidth

Network

 

Figure 8.  ISTE-Alternating Twisting 

Figure 10 shows how ISTE-AT works.  ISTE-AT first starts 
with one traffic source, and twists it to the point that it is no 
longer the dominating source. Then we actually reduce the 
mean rate (bandwidth) of that source to that level and rerun the 
simulation until the variance is acceptable again. We then 
select the next dominating source and apply twisting to this 
source. We repeat this process until we achieve our target 
probability of overflows. 

In the case that there are large numbers of traffic sources in 
the network, the ISTE-AT is still scalable. The calculations 
can be taken place locally at each source or the ingress points 
of the network. The statistics of network traffic from each 
source can be easily collected and calculated locally. [9] 
shows the equation to calculate the likelihood ratio Li can be 
easily implemented in a recursive manner. It consists of only 
normal mathematical operations such as add, multiplication, 
exponential, etc. There are total 7 add/subtraction operations, 
3 division operation, 11 multiplication operation, and 2 
exponential operation.  Assume each operation takes 10 
cycles, the total calculation for each traffic source will take 
230 cycles. With processor at 1.7 GHz these days, with even 
10,000 sources in the network, the total calculation will take 
less than 1 ms.  

 

 

Figure 9.   ISTE-AT Prediction on Probability of Overflow Trajectory 

 

Figure 11 is the predictions made by ISTE-AT on how the 
probability of overflows will change as the bandwidths of the 

two traffic sources are reduced.  It started with twisting source 
B, and then it switched to twisting source A, and then back to 
source B, etc. From the twisting results, if the mean rate of 
source A is reduced by 0.5 unit/sec and the mean rate of source 
B is reduced by 0.4 unit/sec, the logarithm scale end-to-end 
probability of overflow should be -5.9974. The measured result 
from the Monte Carlo Simulation shows the logarithm scale of 
the actual end-to-end probability of overflow, after these 
reductions are made, is -6.065. Since the predictions and the 
measured results are so close, it shows the IST-AT prediction is 
accurate. 

VI. CONCLUSION 
The ISTE approach proposed in this paper is simple, fast, 

and does not require intimate knowledge of the internals of a 
network. Thus, it is applicable in large and complex networks. 
From the simulation results of this paper, it is shown that ISTE 
can indeed offer a mapping from the bandwidth used by ingress 
traffic flows to the network QoS. The ISTE approach is 
effective in end-to-end performance analysis, as well as in 
single node performance analysis, under the self-similar traffic 
model. Even in scenarios where there are multiple congested 
nodes in the network, the ISTE prediction is still accurate. The 
simulation results also show that the ISTE-AT technique is 
effective when the network QoS is heavily influenced by more 
than one traffic flow. 
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