
Simulated Annealing Based Bandwidth Reservation
for QoS Routing

Baohua Zhanga, Changcheng Huangb, Michael Devetsikiotisc

a School of Mathematics and Statistics, Carleton University, Ottawa, Canada
bhzhang@sce.carleton.ca

b Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
huang@sce.carleton.ca

c Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
mdevets@ncsu.edu

Abstract— Numerous routing schemes have been reported to
improve network performance over the years. Multi-path
routing belongs to one of them and MPLS is an excellent
platform for such routing. In this paper, the Shortest Distance
Path Based Simulated Annealing (SDPSA) algorithm for finding
optimal bandwidth reservation solutions for multi-path routing is
developed to improve network performances. The algorithm,
which employs the annealing method, is based on previous
solutions to find the current sub-optimal solution for multi-path
routing. Multiple objectives including balancing traffic load and
minimizing network resource consumption are taken into
consideration. Finally, the proposed algorithm is applied to a
randomly generated network and the NSFNET network. The
performance values are compared to a well-known multi-path
routing algorithm-HSTwp. The simulation and comparison
results show that the proposed SDPSA algorithm is feasible and
efficient for the optimization of multi-path IP routing.

I. INTRODUCTION

 Congestion control is one of the major problems of
network optimization. Many congestion control algorithms
reduce the traffic rate at the edge of the network based on
feedbacks of the online traffic measurements. There are
others trying to solve the congestion by shifting the traffic to
alternative paths [1][2]. Due to traffic shaping at the edge,
traffic demands in the core network are usually stable over a
given time period [3]. Given the topology of a network and
capacity of the links, some online measurement approaches
such as effective bandwidth approximation, can be used to
estimate the available bandwidth over different links [4][5].
 To avoid uneven network utilization, numerous
approaches with various objectives in network optimization
have been proposed for efficiently utilizing the network
resources such as [6][7][8][9][10]; Fortz’s scheme adjusted
link weights to optimize the network utilization [6]; Wang’s
scheme minimized the maximum utilization over links to
improve the ability of accepting more future traffic [7];
Kodialam’s scheme tried to establish a path with less
interference by increasing the cost of critical links [8]; In
reference [9], constrained multi-path routing scheme was
formulated, and a heuristic algorithm called HSTwp was given
by Lee et al. to calculate the constrained multiple paths and
their load splitting ratios. By splitting the traffic demands

among multiple paths, it is possible to improve the overall
network utilization through better load balancing schemes.
However, splitting the traffic demands among multiple paths
also raises new problems, for example, how to determine the
number of paths and how to assign the volume of traffic to the
selected paths in accommodating various traffic demands; how
to adaptively accommodate the dynamic traffic demands by
using multi-path routing algorithms, etc. Such issues require
the candidate multi-path routing algorithms to be simple and
scalable.
 In this paper, we introduce an algorithm called SDPSA
to find sub-optimal multi-path routing solutions for dynamic
traffic demand. SDPSA algorithm proposed here is a simple
adaptive routing algorithm which allows efficient load
balancing and network resource consumption. Our objective
is to find a set of paths that can accommodate traffic demands
with as little consumption of network resources as possible.
At the same time, network load balancing is considered to
reduce network congestions. Through simulated annealing, the
summation of distances of selected path set (SPS) is
minimized. Starting from the previous solution as initial
annealing point, the SDPSA algorithm is more efficient in
path set re-selection as traffic demands change dynamically.
 The rest of the paper is organized as follows: section II
formulates the problem leading to the development of the
SDPSA algorithm and describes the objectives in detail.
Some definitions and notations are also given. In section III,
after a brief description of the background of simulated
annealing, the SDPSA algorithm is developed. In section IV,
the proposed algorithm is applied to two network examples
and the simulation results are analyzed and compared with the
well-known multi-path routing algorithm, HSTwp. The last
section summarizes our work and identifies some directions
for future work.

II. PROBLEM FORMULATION

 A backbone network can be modeled as a bi-directional
graph G (V, E). Nodes or vertices {V} represent switches,
routers, or hosts; edges {E} represent communication edges,
N=|V| and M=|E| denote the number of vertices and edges
respectively. For each edge in E, there will be two links for

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

both traffic directions, they are expressed as (i,j) and (j,i).
Throughout this paper, (i, j) will be used to denote a link from
node i to node j and rxy is used to denote a path from ingress
node x to egress node y unless specified otherwise.

A. Some Definitions

 Traffic demand matrix: For each link (i, j) in E, where i
and j are network nodes, let Cij be the capacity of the link. Let
Td (τ) represent the set of all traffic demands among all pairs
of ingress and egress routers over a MPLS network at time τ.
The traffic demand matrix can be written as the matrix Td (τ)
in (1);)(, τjit stands for traffic demands from node i to

node j and)(, τjit is piecewise constant in each time period

τ. (1,0 −Nji). τ stands for each time period. For
example, time period τ1 stands for time T0 to T1 and τ2 stands
for time T1 to T2, and so on.
 We assume here that there is a good enough online
measurement algorithm that can predict the future traffic
relatively accurately. Sometimes the traffic predictions are not
so accurate especially when predicting the future traffic in
relatively small time period is needed. In our example, we use
the aggregation of effective bandwidths from the edge of the
network. This way, we can obtain a relatively accurate traffic
matrix Td(τ) indicating the future traffic demands in the next
time period after τ. The time period can be measured in hours
or days. Within each of these time periods, the traffic demand
matrix is fixed. This assumption is reasonable according to the
previously reported work [10][11]. As mentioned in [11], the
traffic profile can be taken from the service level agreements,
created by rule-of-thumb or any other mechanism suitable to
the network operator.

)1(

0)(...)()(
)(0...)()(

......0......
)()(...0)(
)()(...)(0

)(

2,11,10,1

1,21,20,2

1,12,10,1

1,02,01,0

=

−−−−

−−−−

−−

−−

τττ
τττ

τττ
τττ

τ

NNNN

NNNN

NN

NN

d

ttt
ttt

ttt
ttt

T

 Candidate Path Set (CPS): All paths between an ingress
and egress pair are candidate paths for this ingress-egress pair.
A Candidate Path Set (CPS) is the set of all paths for all
ingress-egress pairs in a given topology.
 Selected Path Set (SPS): a SPS is a subset of CPS, which
can satisfy the traffic demand matrix Td (τ). Therefore it is a
function of time period τ. In the following, we will omit τ for
simplicity.
 Norm of a SPS: the number of paths in a selected path set
S is its norm, denoted by |S|. With the given traffic demands
Td, there is a total of N*(N-1) pairs of nodes. For each pair of
nodes (x, y) which has nonzero traffic demands, there is a
certain number of paths, denoted by |S|x,y, in SPS to
accommodate the traffic demands related to node pair (x, y).
 Neighbor of a SPS: the set of all SPS with the same
number of paths for each ingress-egress pair as SPS S is called
the neighbor of S . Thus, N(S) has the same norm |S|.
 Complete Solution Set, Csps: all possible solutions related
to all SPS in accommodating given traffic demands are called
the complete solution set Csps. Csps is the whole solution space
for the incoming traffic demands Td (τ).
 Link Capacity Table: This table contains the identity
information of each link in the network. It also contains the
nodes incident to each link, and the original capacity of each
link. Moreover, the dynamically updated residual capacity for
each link is also included.

 Path vector, P(i
xyr): path vector contains several pieces

of information: the identification of links in the path, the
identification of the path (i) among node pair x and y, the
capacity of the path i.e. the minimum of the capacities of all
links in the path, and the amount of traffic assigned to this

path. For example, P(i
xyr)=(l0,l1,l2,...,lM-1,

i
xyC , i

xyrS) stands

for a path vector related to path r from node x to node y. For
each ingress-egress pair x and y, there might be many paths.
We will use the notation i to identify the different paths related

to ingress-egress pair x and y (i=1,2,3,…). i
xyC is defined as

the capacity of the path which is the minimal capacity of all
links in the path, and i

xyrS is the traffic assigned to path

i
xyr . We will use bandwidth as units for both i

xyC and

i
xyrS in the following sections.1 All nodes are sorted and

each node is identified with an i.d. number from 0 to N-1.
Supposing a link exists from node i to node j (0< i < j < N-
1), li is defined as (2).

1 Generally, we will use xyr to denote a path between ingress-egress

nodes x and y when we do not need to identify all the paths among these
two nodes.

∈−

∉

∈

=

xy

xy

xy

i

 ri) (j1,

r(i,j) 0,

 r(i,j)1,

l

,

 (2)

 SPS generator function: The SPS generator function is used
for generating a SPS. The input includes traffic demand matrix,
traffic incident matrix, path vector, link capacity table, and a
subset of a related CPS to accommodate the traffic demand
matrix. The SPS generator function verifies if the subset is a
selected path set. The output includes the SPS and its norm when
the given subset is SPS; otherwise it provides an additional
suggested path set Fig. 1.

≤ ≤

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

 Fig. 1: SPS generator function

B. Formulation

 Our objective is to achieve minimum overall resource
consumption and balance the load simultaneously. We
define the distance of a path to be the sum of the inverses of
the available bandwidths on all links along the path. This
definition tries to strike a balance between link hop counts
and available bandwidth.
 Supposing Uij is the unused bandwidth of link (i, j)
where (i, j) is a link in path rxy. If we use Sij to denote the
total traffic amount assigned to link (i, j), then Uij = Cij - Sij

}{,;
),(

VyxyxwhereSS
xy

xy
rji

rij ∈≠=
∈

 (3)

 Formula (3) shows the traffic assigned to link (i, j)
equals the sum of the entire traffic assigned to each path in
SPS traverses link (i, j). V stands for the node set. We
define the distance of a path rxy as in (4)

∈
=

xyrji
ijxy UrD

),(
/1)((4)

 Given a topology G (V, E) with N nodes and related
capacities for links, there is a total of N*(N-1) pairs of
nodes. With given traffic demand, the objective function is
formulated as follows:

}{,;)(VyxyxwhererDMin
Sr

xy
CS

xy
sps

∈≠
∈∈

 (5)

Subject To:
1. xyijij rjiwhereCS ∈≤),(

2. xy
Sr

r tS
xy

xy
≥

∈
 }{,; Vyxyxwhere ∈≠

 Where rxy stands for the paths between nodes x and y;
)(, τyxt is the traffic demands between nodes x and y.

()(, τyxt is an element in traffic demand matrix Td (τ)) Sij and

xyrS are the traffic assigned to link (i, j) and path rxy

respectively. While the total traffic assigned to link (i, j), Sij, is
equal to the sum of the traffic assigned to all paths rxy that
traverse link (i, j), as shown in (3).
 The reason why we chose to minimize the sum of distances
of all selected paths between all ingress-egress pairs is the
following: the distance of each path is a combination of
considering both load balance and network resource
consumption. The sum of the distances of all selected paths
between all ingress-egress node pairs is a combined
consideration of two objectives: load balancing and resource
consumption of the whole network.
 To summarize, the paths in the optimized Selected Path
Set should have as low hop counts as possible, at the same time,
we should aim to balance the load over all paths in order to keep
the available bandwidth of each link as much as possible
 The calculation of (5) is time consuming because the
available bandwidth along all links changes dynamically.
Furthermore, the change of a path selection in one ingress and
egress router pair might lead to changes among a few other pairs
and finally make the calculation even more complex. To solve
the problem within a reasonable time frame, the next section will
deal with the simulated annealing technique used for developing
an algorithm.

III. SDPSA ALGORITHM

A. Simulated Annealing

 The SDPSA algorithm discussed in this paper is based on
the so-called annealing process. The term annealing is an
analogy of an optimization technique to the cooling process of a
liquid or solid. In an annealing process a metal is allowed to be
cooled more slowly than usual and its interior structure will be
more consistently; therefore, it will have much stronger crystal
structures than their counterparts with faster cooling. Since
Kirkpatrick et al suggested the simulated annealing technique in
1983 [12], it has been widely applied to optimization in areas
such as the Very Large Scale Integration (VLSI) design, and the
Traveling Salesman Problem (TSP) which is an NP hard problem.
 The simulated annealing scheme for finding the optimal
solution can be applied to solving the multi-path routing
optimization problem in section II. In order to find a Selected
Path Set satisfying our objective function in (5), we need to take
a further look at the distance formula (4). In formula (4), each
element on the right-hand side is an indication of the utilization
of each link. The summation part indicates the total hops in each
path. In summary, the paths in the optimized selected path set
should have as little hop count as possible, and at the same time,

Σ

Σ

Σ

Σ

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

balance the load over all paths to keep as much available
bandwidth as possible on each link.
 In order to accommodate the traffic demands, the
paths of some node pairs (or all node pairs) in the network
(depending on the traffic demand matrix) will be selected
and the traffic will be assigned to each path according to its
link capacity. For each particular node pair in the network,
when the number of paths increases in the Selected Path Set,
the link utilization in each path will decrease. On the other
hand, the link utilization will increase if fewer paths are
selected for the traffic demand related to this particular node
pair.

B. SDPSA Algorithm

 As we mentioned previously, the optimization
problem discussed in this paper is very similar to an
annealing process, and thus simulated annealing
optimization is applied. As discussed above, the traffic
metrics do not change in a certain time period regardless of
the duration of this period. In a given time period τ1, we
assume that the sub-optimized solution is available with a
given path set which can accommodate related traffic
demands with minimized objective function. As the time
moves to the next period, τ2, the traffic demand metrics
change, and consequently, some or all of the paths related to
individual ingress and egress pairs should be changed in
order to reach new optimal solution. As shown in Fig. 2,
our newly developed SDPSA algorithm does take
advantage of the previous optimal solution to achieve the
current objective.

Select any candidate subset related to traffic demand matrix and
get an initial solution S0 from S Generator
Repeat

Repeat
Randomly select S in N(S0)
let δ=F(S)-F(S0)
if δ < 0 then S0=S
else generate random x uniformly in range (0,1);
if x< exp (- δ*|S|) then S0=S;

Until iteration-count = next representative
Add edges to S0 based on edge capacity table

Until all edges reach the stopping condition
S0 is approximately to the optimal solution.

Fig. 2: SDPSA algorithm

 There are two loops in the SDPSA algorithm, and the
inner loop searches for a better solution among those SPSs
with the same norm. The SPS with the same norm is the
analogy of the temperature in simulated annealing. The
SPS (noted as S) with the same norm here stands for the
number of paths that have been selected according to each
ingress and egress pair (yxS ,||) are equal.

∈
=

Sr
yx

yx

SS
,

,|||| Where }{,; Vyxyx ∈≠ (6)

 Parameter δ is defined as the difference between the
currently selected sample of distance of S (7) and its

neighbor’s distance of S0 (8).

∈
∈

=

)(0

)()(

SNS
Sr

xy
xy

rDSF (7)

∈
=

0

)()(0
Sr

xy
xy

rDSF (8)

 Here S is also a selected path set. Whenever a better
solution is found, i.e. δ < 0, the currently best solution will be
updated; otherwise, a random number x between (0, 1) is
generated. If x < exp (-δ*|N-S0|), the currently best solution will
still be updated. The iteration continues until the maximum
number of repetitions is reached.
 The outer loop increases the number of paths similar to the
decrease of temperature in the simulated annealing process until
the stopping condition is met. Indeed, the solution of the last
time period can be used as the initial solution of the current time
period. As shown in Fig. 2, if previous solution, say S0, can
accommodate current traffic demands, the algorithm will simply
take S0 as the current solution.
 As can be seen from the algorithm in Fig. 2, the SDPSA
algorithm allows probabilistic acceptance of non-improving
moves. The acceptance probability depends on the control
parameter, |S|, and the amount of costs increases, δ. The
acceptance probability is high for a small δ and |S|. As |S|
increases, the acceptance probability will decrease accordingly.

C. Complexity Analysis

 The HSTwp algorithm contains three parts: preprocessing
the given graph, finding multiple paths, and calculating load-
splitting ratios. The complexity analysis of the HSTwp
algorithm is as following: firstly, in the graph conversion
problem, the computation complexity is bounded by O(|M+N|)
where M is the number of links and N is the number of nodes in
the graph. Secondly, in the K widest paths problem, the best
known bound for the ordered set is O(N3). Finally, the algorithm
for splitting the traffic demand into K paths is bound by O
(|KlogK|), and calculating the load splitting ratio for each path is
bound by O(|2K|) where K is the number of paths selected.
Therefore, the time complexity for the HSTwp algorithm is
bound by O(M+ N3+|KlogK|) [9].
 The SDPSA algorithm also consists of three parts. Firstly,
in preparing the candidate path set for each node pair, the
computation complexity is O(N!). However, finding K paths
between each pair of nodes in the network to be the candidate
path set is the alternative solution for finding the candidate path
set. The complexity of finding K paths for a pair of nodes is
bounded by O(N3) [13]. There is a total of N*(N-1) pairs where
N is the number of nodes. Therefore the total computation
complexity for this computing K paths for each pair of nodes in
the network as our candidate path set is O(N5). This part needs to
be calculated offline for one time only unless the topology
changes. Second, in the initial selected path set, the worst case
for calculating a selected path set, with S generator function, is
O(N2*KMlogN) where M is the number of links, N is the number
of nodes, and K is the number of paths for any pair of nodes in a
given topology. Finally, for the simulated annealing process, we

Σ

Σ

Σ

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

simply use previous SPS if the previous solution can
accommodate the current future traffic. Otherwise, SPS
will be re-calculated and the time complexity is bounded by
O(N2*KMlogN). The total number of paths in candidate
path set is K*N*(N-1). If we increase the norm by one each
time, the time complexity for the simulated annealing
process is bound by O(N4*K2MlogN). In a more coarse way,
we can increase the norm of SPS by at most N2 links each
time until number of paths related to each pair reaches the
limit K. The complexity for the simulated annealing
process is then reduced to O(N2*K2MlogN) [14].

IV. SIMULATION RESULTS

 In this section, the performance of the SDPSA
algorithm is compared with the HSTwp algorithm in a
random generated network topology (case I), and in the
NSF network (case II).

A. Simulation Analysis for Case I

 The performance of the SDPSA algorithm is
investigated by applying the algorithm to a randomly
generated topology example. The topology shown in Fig. 3
is generated by the BRITE topology generator [15], which
can generate flat topologies. Our topology example has six
nodes and twenty links. Link capacities are obtained from
the BRITE package by using a uniform distribution over the
range of {300 1000} bandwidth units. The traffic is bi-
directional and the traffic demands are asymmetric as that
of the common cases in [9]. The traffic demands are taken
from randomization of an initial static traffic demands
matrix of {t05=600, t14=500, t21=400, t54=300}.
 By applying the well-known heuristic HSTwp
algorithm reported in [9] and our SDPSA algorithm to the
scenario above, two groups of different multi-path routing
solutions are generated through various time periods. In the
following, we will analyze the simulation results to show
that the SDPSA algorithm has a superior performance over
the HSTwp algorithm in terms of overall network resource
consumption.

Fig. 3: Simulation topology

 Table 1 shows that the SDPSA algorithm consistently
saves overall network resources. The total network
resource consumption is calculated by adding the product of
all the bandwidth assigned to each of the selected paths and

hop counts in each path. On average, by using SDPSA, 12.9%
resource was saved compared to HSTwp algorithm. The
maximum resource savings can reach up to 26.6%, which is
more than twice of the average resource saved. This implies that
the algorithm meets our objective of reducing network resource
consumption. By using our algorithm, the network can satisfy
dynamic traffic demands more efficiently.

Table 1: TOTAL RESOURCES CONSUMED FOR CASE I

Time
period

Resources
used in
SDPSA
(RSDPSA)

Resources
used in
HSTwp
(RHSTwp)

Resources gain
 ((RHSTwp-

RSDPSA)/RSDPSA)

1 3841 4532 0.180
2 3500 3911 0.117
3 3206 3542 0.105
4 3560 3911 0.099
5 3570 3870 0.084
6 3989 4215 0.057
7 2440 3061 0.255
8 3355 4247 0.266
9 4394 5081 0.156

10 3948 4077 0.033
Average 3580.3 4044.7 0.129

B. Simulation Analysis for Case II

 Different from scenario I which is a randomly generated
simpler network topology, the NSFNET (Fig. 4) is a well known
practical core network example. The performance of our SDPSA
algorithm is analyzed using this real backbone network topology.
Again, the HSTwp algorithm is performed on the same topology
for comparison. Similar to scenario I, the link capacities are
obtained by using a uniform distribution over the range of {300
1000} Megabytes bandwidth units. The traffic demands are
generated from randomization of an initial static traffic demand
matrix of {t1,8=400, t2,6=700, t11,13=500} and we use megabyte
bandwidth units as the traffic demands.

Fig. 4: NSFNET Topology with bi-directional links

 Table 2 shows the SDPSA algorithm consistently saves
overall network resources over the HSTwp algorithm on average,
by using the SDPSA algorithm, 7.3% less network resources
were consumed comparing to the HSTwp algorithm. The
maximum resource saving can reach up to 10%. The overall

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

resource gain for the SDPSA algorithm is less than the gain
in scenario I. One of the factors that affect the resource
gain is that there exists less disjoint paths for node pairs in
NSFNET topology. Nevertheless, our SDPA algorithm
does successfully achieve the objective of reducing the total
network resource consumption. As a result, by using the
SDPSA algorithm, the network can accommodate more
traffic demands.
Table 2: TOTAL RESOURCES CONSUMED FOR CASE II

Time
period

Resources
used in
SDPSA
(RSDPSA)

Resources
used in
HSTwp
(RHSTwp)

Resources gain
 ((RHSTwp-

RSDPSA)/RSDPSA)

1 4153 4540 0.0932
2 4185 4546 0.0863
3 3608 3916 0.0854
4 3784 4111 0.0860
5 4632 4866 0.0510
6 5158 5371 0.0420
7 3386 3662 0.0820
8 3576 3938 0.1000
9 3148 3454 0.0974
10 5500 5550 0.0091

Average
4113 4395.4 0.0732

V. CONCLUSIONS

 In this paper we present a Shortest Distance Path based
Simulated Annealing (SDPSA) algorithm for the multi-path
routing and the splittable multi-commodity flow problem
for dynamic traffic engineering in backbone networks. The
algorithm finds a set of paths with the objective of
minimizing the overall network resource consumption and
achieving network load balancing at the same time.
Moreover, the algorithm takes advantage of the previous
sub-optimal solution by using it as the initial point for
subsequent annealing process. As a result, the SDPSA
algorithm is more efficient in getting new sub-optimal
solutions. The SDPSA algorithm is applied to a randomly
generated network topology and to the NSFNET topology.
After comparing the proposed algorithm with the well-
known HSTwp algorithm, the simulation results and
comparison analysis show that the SDPSA algorithm has a
superior performance over the HSTwp algorithm in terms of
network resource consumption.
 By using the multi-path routing with bandwidth
reservation over backbone networks, the SDPSA algorithm
gives a sub-optimal solution regarding the dynamic traffic
demands. The simulated annealing method used in the
algorithm takes advantage of previous multi-path routing
information as its initial point for the current period. This is
an efficient way to obtain multi-path routing solutions with
dynamic traffic demands.
 It is necessary for future research to uncover the
applicability of the SDPSA algorithm to different
applications such as VoIP and VPN. Improving the

algorithm, for example, in regards to the alternative stopping
conditions in the algorithm could be possible direction for future
research.

ACKNOWLEDGMENT

 The authors would like to express their appreciations to all
people in Optical Networks Laboratory in Carleton University
especially Ph.D. candidate HongQing Zeng for his valuable
comments and stimulating discussions.

REFERENCES

[1] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering”, INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE,Vol.3, 2001,pp.1300-1309.

[2] S.D. Patek, R. Venkateswaran, J. Liebeherr, “Enhancing Aggregate QoS
Through Alternate Routing”, Global Telecommunications Conference,
2000. GLOBECOM '00.IEEE Volume 1, 27 Nov.-1 Dec. 2000 Page(s):611
- 615 vol.1

[3] K. Papagiannaki, N. Taft, Z. Zhang & C. Diot, “Long-Term Forecasting of
Internet Backbone Traffic-Observations and Initial Models”, Conf.
Computer Communications, IEEE INFOCOM, 2003

[4] F. Kelly, “Notes on Effective Bandwidths,” Stochastic Networks: Theory
and Applications, ClarendonPress, Oxford, 1996.

[5] A.W. Berger, Y Kogan, “Dimensioning Bandwidth for Elastic Traffic in
High Speed Data Networks,” Networking, IEEE/ACM Transactions on, Oct.
2000.

[6] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Changing
World,” IEEE Journal on Selected Areas in Communications (JSAC),
20(4):756—766, May 2002.

[7] Y. Wang, and Z. Wang, “Explicit Routing Algorithms for Internet Traffic
Engineering”, in Proc. IEEE ICCCN, 1999

[8] M. Kodialam and T.V. Lakshman, “Minimum Interference Routing with
Applications to MPLS Traffic Engineering”, Proceedings of IEEE
INFORCOM 2000

[9] Y. Lee, Y. Seok, and Y. Choi, “Traffic Engineering with Constrained
Multi-path Routing in MPLS Networks”, IEICE TRANS. COMMUN.,
2002

[10] Y. Yang and C.-H. Lung, "Traffic Forecast in QoS Routing", Proc. of the
22nd Queens Biennial Symposium on Communications (QBSC), Queens
University, Kingston, ON, May 2004, pp. 277-279.

[11] S. Suri, M. Waldvogel, D. Bauer & P. R. Warkhede, “Profile Based
Routing and Traffic Engineering”, Computer Communications, vol. 26,
2003.

[12] J.C. Spall, “ Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control”, Wiley, Hoboken, NJ, 2003

[13] J.Y. Yen, “Finding the K Shortest Loop-less Paths in a Network”,
Management Science 17:712-716, 1971

[14] B. Zhang, “SDP Based Simulated Annealing on Bandwidth Reservation
with Multi-Path Routing”, M.Sc. thesis, School of Mathematics and
Statistics, Ottawa-Carleton Institute of Mathematics and Statistics, Carleton
University, 2005

[15] A. Medina, A.Lakhina, I. Matta, and J. Byers. “Brite: An Approach to
Universal Topology Generation,” Proc. MASCOTS Aug, 2001

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

