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Abstract— Numerous routing schemes have been reported to 
improve network performance over the years.  Multi-path 
routing belongs to one of them and MPLS is an excellent 
platform for such routing.  In this paper, the Shortest Distance 
Path Based Simulated Annealing (SDPSA) algorithm for finding 
optimal bandwidth reservation solutions for multi-path routing is 
developed to improve network performances.  The algorithm, 
which employs the annealing method, is based on previous 
solutions to find the current sub-optimal solution for multi-path 
routing.  Multiple objectives including balancing traffic load and 
minimizing network resource consumption are taken into 
consideration.  Finally, the proposed algorithm is applied to a 
randomly generated network and the NSFNET network.  The 
performance values are compared to a well-known multi-path 
routing algorithm-HSTwp.  The simulation and comparison 
results show that the proposed SDPSA algorithm is feasible and 
efficient for the optimization of multi-path IP routing. 

I. INTRODUCTION 

           Congestion control is one of the major problems of 
network optimization.  Many congestion control algorithms 
reduce the traffic rate at the edge of the network based on 
feedbacks of the online traffic measurements.  There are 
others trying to solve the congestion by shifting the traffic to 
alternative paths [1][2].  Due to traffic shaping at the edge, 
traffic demands in the core network are usually stable over a 
given time period [3]. Given the topology of a network and 
capacity of the links, some online measurement approaches 
such as effective bandwidth approximation, can be used to 
estimate the available bandwidth over different links [4][5]. 
          To avoid uneven network utilization, numerous 
approaches with various objectives in network optimization 
have been proposed for efficiently utilizing the network 
resources such as [6][7][8][9][10];  Fortz’s scheme adjusted 
link weights to optimize the network utilization [6];  Wang’s 
scheme minimized the maximum utilization over links to 
improve the ability of accepting more future traffic [7];  
Kodialam’s scheme tried to establish a path with less 
interference by increasing the cost of critical links [8];  In 
reference [9], constrained multi-path routing scheme was 
formulated, and a heuristic algorithm called HSTwp was given 
by Lee et al. to calculate the constrained multiple paths and 
their load splitting ratios.  By splitting the traffic demands 

among multiple paths, it is possible to improve the overall 
network utilization through better load balancing schemes.  
However,  splitting the traffic demands among multiple paths 
also raises new problems, for example, how to determine the 
number of paths and how to assign the volume of traffic to the 
selected paths in accommodating various traffic demands; how 
to adaptively accommodate the dynamic traffic demands by 
using multi-path routing algorithms, etc. Such issues require 
the candidate multi-path routing algorithms to be simple and 
scalable. 
          In this paper, we introduce an algorithm called SDPSA 
to find sub-optimal multi-path routing solutions for dynamic 
traffic demand.  SDPSA algorithm proposed here is a simple 
adaptive routing algorithm which allows efficient load 
balancing and network resource consumption.  Our objective 
is to find a set of paths that can accommodate traffic demands 
with as little consumption of network resources as possible.  
At the same time, network load balancing is considered to 
reduce network congestions. Through simulated annealing, the 
summation of distances of selected path set (SPS) is 
minimized. Starting from the previous solution as initial 
annealing point, the SDPSA algorithm is more efficient in 
path set re-selection as traffic demands change dynamically.   
         The rest of the paper is organized as follows: section II 
formulates the problem leading to the development of the 
SDPSA algorithm and describes the objectives in detail.  
Some definitions and notations are also given.  In section III, 
after a brief description of the background of simulated 
annealing, the SDPSA algorithm is developed. In section IV, 
the proposed algorithm is applied to two network examples 
and the simulation results are analyzed and compared with the 
well-known multi-path routing algorithm, HSTwp.  The last 
section summarizes our work and identifies some directions 
for future work.  

II.  PROBLEM FORMULATION 

         A backbone network can be modeled as a bi-directional 
graph G (V, E).  Nodes or vertices {V} represent switches, 
routers, or hosts; edges {E} represent communication edges, 
N=|V| and M=|E| denote the number of vertices and edges 
respectively.  For each edge in E, there will be two links for 
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both traffic directions, they are expressed as (i,j) and (j,i).  
Throughout this paper, (i, j) will be used to denote a link from 
node i to node j and rxy is used to denote a path from ingress 
node x to egress node y unless specified otherwise. 

A. Some Definitions 

        Traffic demand matrix: For each link (i, j) in E, where i 
and j are network nodes, let Cij be the capacity of the link. Let 
Td (τ) represent the set of all traffic demands among all pairs 
of ingress and egress routers over a MPLS network at time τ.  
The traffic demand matrix can be written as the matrix Td (τ) 
in (1); )(, τjit  stands for traffic demands from node i to 

node j and )(, τjit  is piecewise constant in each time period 

τ.  ( 1,0 −Nji ).  τ stands for each time period.  For 
example, time period τ1 stands for time T0 to T1 and τ2 stands 
for time T1 to T2, and so on.  
          We assume here that there is a good enough online 
measurement algorithm that can predict the future traffic 
relatively accurately. Sometimes the traffic predictions are not 
so accurate especially when predicting the future traffic in 
relatively small time period is needed.  In our example, we use 
the aggregation of effective bandwidths from the edge of the 
network. This way, we can obtain a relatively accurate traffic 
matrix Td(τ) indicating the future traffic demands in the next 
time period after τ. The time period can be measured in hours 
or days. Within each of these time periods, the traffic demand 
matrix is fixed. This assumption is reasonable according to the 
previously reported work [10][11].  As mentioned in [11], the 
traffic profile can be taken from the service level agreements, 
created by rule-of-thumb or any other mechanism suitable to 
the network operator. 
 

)1(

0)(...)()(
)(0...)()(

......0......
)()(...0)(
)()(...)(0

)(

2,11,10,1

1,21,20,2

1,12,10,1

1,02,01,0























=

−−−−

−−−−

−−

−−

τττ
τττ

τττ
τττ

τ

NNNN

NNNN

NN

NN

d

ttt
ttt

ttt
ttt

T

  

        Candidate Path Set (CPS): All paths between an ingress 
and egress pair are candidate paths for this ingress-egress pair.  
A Candidate Path Set (CPS) is the set of all paths for all 
ingress-egress pairs in a given topology. 
        Selected Path Set (SPS): a SPS is a subset of CPS, which 
can satisfy the traffic demand matrix Td (τ). Therefore it is a 
function of time period τ. In the following, we will omit τ for 
simplicity. 
        Norm of a SPS: the number of paths in a selected path set 
S is its norm, denoted by |S|.   With the given traffic demands 
Td, there is a total of N*(N-1) pairs of nodes.  For each pair of 
nodes (x, y) which has nonzero traffic demands, there is a 
certain number of paths, denoted by |S|x,y, in SPS to 
accommodate the traffic demands related to node pair (x, y). 
        Neighbor of a SPS: the set of all SPS with the same 
number of paths for each ingress-egress pair as SPS S is called 
the neighbor of S .  Thus, N(S) has the same norm |S|.  
        Complete Solution Set, Csps: all possible solutions related 
to all SPS in accommodating given traffic demands are called 
the complete solution set Csps.  Csps is the whole solution space 
for the incoming traffic demands Td (τ). 
        Link Capacity Table: This table contains the identity 
information of each link in the network. It also contains the 
nodes incident to each link, and the original capacity of each 
link.  Moreover, the dynamically updated residual capacity for 
each link is also included.   

        Path vector, P( i
xyr ): path vector contains several pieces 

of information: the identification of links in the path, the 
identification of the path (i) among node pair x and y, the 
capacity of the path i.e. the minimum of the capacities of all 
links in the path, and the amount of traffic assigned to this 

path. For example, P( i
xyr )=(l0,l1,l2,...,lM-1,

i
xyC , i

xyrS ) stands 

for a path vector related to path r from node x to node y.  For 
each ingress-egress pair x and y, there might be many paths.  
We will use the notation i to identify the different paths related 

to ingress-egress pair x and y (i=1,2,3,…).  i
xyC  is defined as 

the capacity of the path which is the minimal capacity of all 
links in the path, and i

xyrS is the traffic assigned to path 

i
xyr .  We will use bandwidth as units for both i

xyC  and 

i
xyrS  in the following sections.1  All nodes are sorted and 

each node is identified with an i.d. number from 0 to N-1.  
Supposing a link exists from node i to node j ( 0< i < j < N-
1), li is defined as (2).  
 
                                                        
1  Generally, we will use xyr to denote a path between ingress-egress 

nodes x and y when we do not need to identify all the paths among these 
two nodes.  
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       SPS generator function: The SPS generator function is used 
for generating a SPS. The input includes traffic demand matrix, 
traffic incident matrix, path vector, link capacity table, and a 
subset of a related CPS to accommodate the traffic demand 
matrix. The SPS generator function verifies if the subset is a 
selected path set. The output includes the SPS and its norm when 
the given subset is SPS; otherwise it provides an additional 
suggested path set Fig. 1. 

≤ ≤
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                        Fig. 1:  SPS generator function 

B. Formulation 

        Our objective is to achieve minimum overall resource 
consumption and balance the load simultaneously. We 
define the distance of a path to be the sum of the inverses of 
the available bandwidths on all links along the path.  This 
definition tries to strike a balance between link hop counts 
and available bandwidth.   
        Supposing Uij is the unused bandwidth of link (i, j) 
where (i, j) is a link in path rxy.  If we use Sij to denote the 
total traffic amount assigned to link (i, j), then Uij =  Cij  - Sij  
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        Formula (3) shows the traffic assigned to link (i, j) 
equals the sum of the entire traffic assigned to each path in 
SPS traverses link (i, j).  V stands for the node set.  We 
define the distance of a path rxy as in (4) 
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        Given a topology G (V, E) with N nodes and related 
capacities for links, there is a total of  N*(N-1) pairs of 
nodes.  With given traffic demand, the objective function is 
formulated as follows:   
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            Where rxy stands for the paths between nodes x and y; 
)(, τyxt  is the traffic demands between nodes x and y. 

( )(, τyxt  is an element in traffic demand matrix Td (τ)) Sij and 

xyrS are the traffic assigned to link (i, j) and path rxy 

respectively.  While the total traffic assigned to link (i, j), Sij, is 
equal to the sum of the traffic assigned to all paths rxy that 
traverse link (i, j), as shown in (3). 
         The reason why we chose to minimize the sum of distances 
of all selected paths between all ingress-egress pairs is the 
following: the distance of each path is a combination of 
considering both load balance and network resource 
consumption.  The sum of the distances of all selected paths 
between all ingress-egress node pairs is a combined 
consideration of two objectives: load balancing and resource 
consumption of the whole network. 
          To summarize, the paths in the optimized Selected Path 
Set should have as low hop counts as possible, at the same time, 
we should aim to balance the load over all paths in order to keep 
the available bandwidth of each link as much as possible 
          The calculation of (5) is time consuming because the 
available bandwidth along all links changes dynamically.  
Furthermore, the change of a path selection in one ingress and 
egress router pair might lead to changes among a few other pairs 
and finally make the calculation even more complex. To solve 
the problem within a reasonable time frame, the next section will 
deal with the simulated annealing technique used for developing 
an algorithm. 

III. SDPSA ALGORITHM 

A. Simulated Annealing 

         The SDPSA algorithm discussed in this paper is based on 
the so-called annealing process. The term annealing is an 
analogy of an optimization technique to the cooling process of a 
liquid or solid.  In an annealing process a metal is allowed to be 
cooled more slowly than usual and its interior structure will be 
more consistently; therefore, it will have much stronger crystal 
structures than their counterparts with faster cooling.  Since 
Kirkpatrick et al suggested the simulated annealing technique in 
1983 [12], it has been widely applied to optimization in areas 
such as the Very Large Scale Integration (VLSI) design, and the 
Traveling Salesman Problem (TSP) which is an NP hard problem. 
         The simulated annealing scheme for finding the optimal 
solution can be applied to solving the multi-path routing 
optimization problem in section II.  In order to find a Selected 
Path Set satisfying our objective function in (5), we need to take 
a further look at the distance formula (4).  In formula (4), each 
element on the right-hand side is an indication of the utilization 
of each link. The summation part indicates the total hops in each 
path.  In summary, the paths in the optimized selected path set 
should have as little hop count as possible, and at the same time, 
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balance the load over all paths to keep as much available 
bandwidth as possible on each link.    
         In order to accommodate the traffic demands, the 
paths of some node pairs (or all node pairs) in the network 
(depending on the traffic demand matrix) will be selected 
and the traffic will be assigned to each path according to its 
link capacity.  For each particular node pair in the network, 
when the number of paths increases in the Selected Path Set, 
the link utilization in each path will decrease.   On the other 
hand, the link utilization will increase if fewer paths are 
selected for the traffic demand related to this particular node 
pair.  

B. SDPSA Algorithm 

           As we mentioned previously, the optimization 
problem discussed in this paper is very similar to an 
annealing process, and thus simulated annealing 
optimization is applied.  As discussed above, the traffic 
metrics do not change in a certain time period regardless of 
the duration of this period.  In a given time period τ1, we 
assume that the sub-optimized solution is available with a 
given path set which can accommodate related traffic 
demands with minimized objective function.  As the time 
moves to the next period, τ2, the traffic demand metrics 
change, and consequently, some or all of the paths related to 
individual ingress and egress pairs should be changed in 
order to reach new optimal solution.  As shown in Fig. 2, 
our newly developed SDPSA algorithm does take 
advantage of the previous optimal solution to achieve the 
current objective. 
 
Select any candidate subset related to traffic demand matrix and
get an initial solution S0 from S Generator
Repeat

Repeat
Randomly select S in N(S0)
let δ=F(S)-F(S0) 
if δ < 0 then S0=S
else generate random x uniformly in range (0,1);
if x< exp (- δ*|S|) then S0=S;

Until iteration-count = next representative
Add edges to S0 based on edge capacity table

Until all edges reach the stopping condition
S0 is approximately to the optimal solution.  

Fig. 2: SDPSA algorithm 

          There are two loops in the SDPSA algorithm, and the 
inner loop searches for a better solution among those SPSs 
with the same norm.  The SPS with the same norm is the 
analogy of the temperature in simulated annealing.  The 
SPS (noted as S) with the same norm here stands for the 
number of paths that have been selected according to each 
ingress and egress pair ( yxS ,|| ) are equal. 

∈
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         Parameter δ is defined as the difference between the 
currently selected sample of distance of S (7) and its 

neighbor’s distance of S0  (8).  
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         Here S is also a selected path set.  Whenever a better 
solution is found, i.e. δ < 0, the currently best solution will be 
updated; otherwise, a random number x between (0, 1) is 
generated. If x < exp (-δ*|N-S0|), the currently best solution will 
still be updated.  The iteration continues until the maximum 
number of repetitions is reached.   
         The outer loop increases the number of paths similar to the 
decrease of temperature in the simulated annealing process until 
the stopping condition is met.  Indeed, the solution of the last 
time period can be used as the initial solution of the current time 
period.  As shown in Fig. 2, if previous solution, say S0, can 
accommodate current traffic demands, the algorithm will simply 
take S0 as the current solution. 
          As can be seen from the algorithm in Fig. 2, the SDPSA 
algorithm allows probabilistic acceptance of non-improving 
moves.  The acceptance probability depends on the control 
parameter, |S|, and the amount of costs increases, δ.  The 
acceptance probability is high for a small δ and |S|. As |S| 
increases, the acceptance probability will decrease accordingly. 

C. Complexity Analysis  

           The HSTwp algorithm contains three parts: preprocessing 
the given graph, finding multiple paths, and calculating load-
splitting ratios.  The complexity analysis of the HSTwp 
algorithm is as following: firstly, in the graph conversion 
problem, the computation complexity is bounded by O(|M+N|) 
where M is the number of links and N is the number of nodes in 
the graph.  Secondly, in the K widest paths problem, the best 
known bound for the ordered set is O(N3).  Finally, the algorithm 
for splitting the traffic demand into K paths is bound by O 
(|KlogK|), and calculating the load splitting ratio for each path is 
bound by O(|2K|) where K is the number of paths selected.  
Therefore, the time complexity for the HSTwp algorithm is 
bound by O(M+ N3+|KlogK|) [9]. 
          The SDPSA algorithm also consists of three parts. Firstly, 
in preparing the candidate path set for each node pair, the 
computation complexity is O(N!).  However, finding K paths 
between each pair of nodes in the network to be the candidate 
path set is the alternative solution for finding the candidate path 
set.  The complexity of finding K paths for a pair of nodes is 
bounded by O(N3) [13].  There is a total of N*(N-1) pairs where 
N is the number of nodes.  Therefore the total computation 
complexity for this computing K paths for each pair of nodes in 
the network as our candidate path set is O(N5). This part needs to 
be calculated offline for one time only unless the topology 
changes.  Second, in the initial selected path set, the worst case 
for calculating a selected path set, with S generator function, is 
O(N2*KMlogN) where M is the number of links, N is the number 
of nodes, and K is the number of paths for any pair of nodes in a 
given topology. Finally, for the simulated annealing process, we 
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simply use previous SPS if the previous solution can 
accommodate the current future traffic.  Otherwise, SPS 
will be re-calculated and the time complexity is bounded by 
O(N2*KMlogN).  The total number of paths in candidate 
path set is K*N*(N-1).  If we increase the norm by one each 
time, the time complexity for the simulated annealing 
process is bound by O(N4*K2MlogN).  In a more coarse way, 
we can increase the norm of SPS by at most N2 links each 
time until number of paths related to each pair reaches the 
limit K.  The complexity for the simulated annealing 
process is then reduced to O(N2*K2MlogN) [14]. 

IV. SIMULATION RESULTS 

          In this section, the performance of the SDPSA 
algorithm is compared with the HSTwp algorithm in a 
random generated network topology (case I), and in the 
NSF network (case II). 

A. Simulation Analysis  for Case I 

        The performance of the SDPSA algorithm is 
investigated by applying the algorithm to a randomly 
generated topology example.  The topology shown in Fig. 3 
is generated by the BRITE topology generator [15], which 
can generate flat topologies.  Our topology example has six 
nodes and twenty links.  Link capacities are obtained from 
the BRITE package by using a uniform distribution over the 
range of {300 1000} bandwidth units.  The traffic is bi-
directional and the traffic demands are asymmetric as that 
of the common cases in [9].  The traffic demands are taken 
from randomization of an initial static traffic demands 
matrix of {t05=600, t14=500, t21=400, t54=300}.           
         By applying the well-known heuristic HSTwp 
algorithm reported in [9] and our SDPSA algorithm to the 
scenario above, two groups of different multi-path routing 
solutions are generated through various time periods.  In the 
following, we will analyze the simulation results to show 
that the SDPSA algorithm has a superior performance over 
the HSTwp algorithm in terms of overall network resource 
consumption. 

 
Fig. 3: Simulation topology  

         Table 1 shows that the SDPSA algorithm consistently 
saves overall network resources.  The total network 
resource consumption is calculated by adding the product of 
all the bandwidth assigned to each of the selected paths and 

hop counts in each path.  On average, by using SDPSA, 12.9% 
resource was saved compared to HSTwp algorithm. The 
maximum resource savings can reach up to 26.6%, which is 
more than twice of the average resource saved.  This implies that 
the algorithm meets our objective of reducing network resource 
consumption.  By using our algorithm, the network can satisfy 
dynamic traffic demands more efficiently. 

Table 1: TOTAL RESOURCES CONSUMED FOR CASE I  

Time 
period 

Resources 
used in 
SDPSA 
(RSDPSA) 

Resources 
used in  
HSTwp 
(RHSTwp) 

Resources gain 
 ( (RHSTwp-

RSDPSA)/RSDPSA ) 

1 3841 4532 0.180 
2 3500 3911 0.117 
3 3206 3542 0.105 
4 3560 3911 0.099 
5 3570 3870 0.084 
6 3989 4215 0.057 
7 2440 3061 0.255 
8 3355 4247 0.266 
9 4394 5081 0.156 

10 3948 4077 0.033 
Average 3580.3 4044.7 0.129 

B. Simulation Analysis  for Case II 

         Different from scenario I which is a randomly generated 
simpler network topology, the NSFNET (Fig. 4) is a well known 
practical core network example.  The performance of our SDPSA 
algorithm is analyzed using this real backbone network topology.   
Again, the HSTwp algorithm is performed on the same topology 
for comparison. Similar to scenario I, the link capacities are 
obtained by using a uniform distribution over the range of {300 
1000} Megabytes bandwidth units.  The traffic demands are 
generated from randomization of an initial static traffic demand 
matrix of {t1,8=400, t2,6=700, t11,13=500} and we use megabyte 
bandwidth units as the traffic demands.   

 
Fig. 4: NSFNET Topology with bi-directional links 

             Table 2 shows the SDPSA algorithm consistently saves 
overall network resources over the HSTwp algorithm on average, 
by using the SDPSA algorithm, 7.3% less network resources 
were consumed comparing to the HSTwp algorithm. The 
maximum resource saving can reach up to 10%.   The overall 
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resource gain for the SDPSA algorithm is less than the gain 
in scenario I.  One of the factors that affect the resource 
gain is that there exists less disjoint paths for node pairs in 
NSFNET topology.  Nevertheless, our SDPA algorithm 
does successfully achieve the objective of reducing the total 
network resource consumption.  As a result, by using the 
SDPSA algorithm, the network can accommodate more 
traffic demands.  
Table 2:  TOTAL RESOURCES CONSUMED FOR CASE II  

Time 
period 

Resources 
used in 
SDPSA 
(RSDPSA) 

Resources 
used in  
HSTwp 
(RHSTwp) 

Resources gain 
 ( (RHSTwp-

RSDPSA)/RSDPSA ) 

1 4153 4540 0.0932 
2 4185 4546 0.0863 
3 3608 3916 0.0854 
4 3784 4111 0.0860 
5 4632 4866 0.0510 
6 5158 5371 0.0420 
7 3386 3662 0.0820 
8 3576 3938 0.1000 
9 3148 3454 0.0974 
10 5500 5550 0.0091 

Average 
4113 4395.4 0.0732 

V. CONCLUSIONS 

        In this paper we present a Shortest Distance Path based 
Simulated Annealing (SDPSA) algorithm for the multi-path 
routing and the splittable multi-commodity flow problem 
for dynamic traffic engineering in backbone networks.  The 
algorithm finds a set of paths with the objective of 
minimizing the overall network resource consumption and 
achieving network load balancing at the same time.  
Moreover, the algorithm takes advantage of the previous 
sub-optimal solution by using it as the initial point for 
subsequent annealing process.  As a result, the SDPSA 
algorithm is more efficient in getting new sub-optimal 
solutions.  The SDPSA algorithm is applied to a randomly 
generated network topology and to the NSFNET topology.  
After comparing the proposed algorithm with the well-
known HSTwp algorithm, the simulation results and 
comparison analysis show that the SDPSA algorithm has a 
superior performance over the HSTwp algorithm in terms of 
network resource consumption.   
        By using the multi-path routing with bandwidth 
reservation over backbone networks, the SDPSA algorithm 
gives a sub-optimal solution regarding the dynamic traffic 
demands.  The simulated annealing method used in the 
algorithm takes advantage of previous multi-path routing 
information as its initial point for the current period.  This is 
an efficient way to obtain multi-path routing solutions with 
dynamic traffic demands. 
        It is necessary for future research to uncover the 
applicability of the SDPSA algorithm to different 
applications such as VoIP and VPN.  Improving the 

algorithm, for example, in regards to the alternative stopping 
conditions in the algorithm could be possible direction for future 
research.  
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