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Abstract—As the Internet grows in scale and complexity, the 

benefits of network performance measurements and monitoring 

are significantly increasing. Sampling-based measurement 

methods provide adequate techniques for reducing the quantity 

of control data and attract growing interests. The research 

reported in this paper, addresses the issue of how to carry out the 

sampling in an adaptive fashion, so that the accuracy for 

measuring the quality of service parameters (delay, loss, jitter, 

throughput) is better if we know something about the traffic type 

and traffic parameters. Our study proposes and investigates a 

mechanism that can be set up to adaptively adjust the parameters 

of the sampling technique. Two realistic network topologies 

based on MPLS networks are setup to evaluate the proposed 

adaptive sampling scheme for monitoring and measuring 

network performance metrics. Compared with conventional 

sampling techniques (systematic and stratified sampling), 

simulation results are presented to illustrate that adaptive 

sampling provides the potential for better monitoring, control, 

and management of high-performance networks with higher 

accuracy. 
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MPLS; QoS. 

I. INTRODUCTION 

As we enter the 21st century, the Internet continues to 
experience tremendous growth. Providing Quality of Service 
(QoS) and traffic engineering capabilities in the Internet is 
essential, especially in supporting the requirements of real-time, 

as well as mission-critical applications, such as video and voice. 
Differentiated services and Multi-protocol Label Switching 
(MPLS) are emerging technologies, which play a key role in IP 
networks by delivering QoS and traffic engineering features. 
One of the key questions remaining to be answered is how 
applications (especially those sensitive to delay and loss) 
behave when these new protocols and network architectures are 
used. The proper monitoring and performance evaluation 
techniques have therefore to be developed in order to make 
network management effective and timely [1]. Network 
measurements and monitoring are needed for network design, 
capacity planning and forecasting, operations and management, 
and customer-driven activities. The framework for IP 
performance measurement has been proposed in [2]. There 
have been several research efforts on network performance 
measurements and analysis [3, 4, 5, 6].   

The methods for measuring and monitoring network 
performance parameters usually fall into two categories: 
passive methods and active methods. Active measurement 
generates the controlled probe traffic and injects it into an 
ingress port of the network, and measures the received traffic at 
a receiving node. The method is becoming increasingly 
important due to its great flexibility, intrinsically end-to-end 
nature, and freedom from the need to access core network-
switching elements. Thus active measurement methods are 
typically used to obtain end-to-end statistics such as latency, 
loss and route availability. Passive measurements are based on 
the actual payload traffic in the network. Unlike active methods, 
passive methods do not add extra traffic load to the network. 



Besides this non-intrusive character, they provide a statement 
about the treatment of the current traffic in the observed 
network section. However, recording and logging of packet 
traces in high-speed networks often require special collection, 
storage and processing of very large amount of data. The 
method presented in this paper focuses on the application of 
adaptive sampling with active measurement. 

Sampling-based measurement methods provide adequate 
techniques for reducing the quantity of measurement data and 
attract growing interests. A new working group on this topic 
PSAMP [7] was just formed in IETF, the Internet standards 
forum. Sampling techniques are used to study the behavior of a 
population of elements based on a representative subset. 
Cochran [8] and Krishnaiah and Rao [9] introduce the basic 
concepts and process of sampling algorithms. In packet 
networks, performance parameters are computed by way of 
choosing some particular packets among those crossing the 
network and can be obtained from them to satisfy policy or 
evaluation functions. There are three conventional sampling 
methods (systematic, random and stratified sampling) 
employed by network management systems and measurements. 
Sampling has been applied to measurements for different 
purposes [10, 11, 12, 13]. Systematic sampling is based on the 
deterministic functions, and the sampling decision for a packet 
can either use time-based or count-based sampling methods. 
Time-based sampling is particularly bad for assessing the 
network performance metrics such as delay and delay variation, 
since one tends to miss bursty periods, which contain many 
packets with relatively small inter-arrival times if using a larger 
timer, and to inject unnecessary monitoring packets during 
silent periods, which contain less packets if using a smaller 
timer. In count-based sampling method, there is a high risk that 
the estimation will be biased for reasons of synchronization if 
the metric being measured exhibits periodic behavior. Stratified 
sampling divides the trace into subgroups based on count-based 
or time-based systematic sampling. A simple random sample is 
then selected from each subgroup to get the actual distribution 
of the characteristic in the parent population. Stratified 
sampling may produce a gain in precision in the estimates of 
characteristics of the whole population than systematic 
sampling, but the variance of the estimated value may be still 
large if the population characteristic is independent or weakly 

correlated such as voice traffic. In this paper we propose an 
adaptive sampling method depending on the traffic rate. Our 
simulation results show that the adaptive sampling scheme is 
effective, provided that the appropriate sampling interval and 
rate can be identified and employed.  

The remainder of this paper is organized as follows: Section 
2 focuses on investigating the mechanisms that can be set up to 
adaptively adjust the parameters of the sampling technique 
based on the estimated traffic rate. Section 3 describes our 
simulation model. Section 4 introduces the evaluation criteria. 
Our adaptive sampling method is then evaluated in 
comparisons with conventional sampling methods under 
different types of traffic models.  Finally Section 5 concludes 
our work and discusses some relevant issues. 

II. ADAPTIVE SAMPLING APPROACH 

We know that none of current sampling techniques for 
measuring the quality of service parameters (delay, loss, jitter, 
throughput) address the issue of how to carry out the sampling 
in an adaptive fashion so that the accuracy is better if we know 
something about the traffic type (voice, video and Internet data) 
and traffic parameters (average rate, burst size, packet length 
distribution). To address these issues, we introduce the concept 
of adaptive sampling into active measurement, and investigate 
how adaptive techniques can be used to adjust the sampling 
rate for each parameter monitored according to the availability 
of information about source statistics. One advantage of this 
method is that it can eliminate the bias caused by 
synchronization. It achieves this by injecting a monitoring 
packet randomly during every time period. Another advantage 
is that it can reduce the variance of the estimated values by 
employing TSW rate estimator for smoothing instantaneous 
rates. The rate estimator also reports changes of the smoothed 
rates to the sampler allowing sampling to be adaptive based on 
the measured rates. Since the number of monitoring packets 
over a fixed time interval is adaptively adjusted with the 
estimated traffic rate, the sampling rate may be reduced.  

A key element in adaptive sampling is the prediction of 
future behavior based on observed behavior. We use the 
characteristics of the previous block to estimate the 
characteristics of the current block, and derive from those the 



sampling rates for the current block. If the prediction is 
accurate, the sampling rate can be reduced.  

In summary our adaptive sampling mechanism has three 
distinct parts: a rate estimator, sample size estimation algorithm 
and sampling scheme. In the follows we will discuss each part 
in detail. 

A. Time Sliding Window Rate Estimator 

Time Sliding Window (TSW), a probabilistic tagging 
algorithm for marking packets, is proposed as part of a 
DiffServ mechanism in [14]. The design of TSW is very simple. 
TSW is employed in our scheme to estimate the traffic rate. 
The estimated rates are updated upon each packet arrival and 
then decay over time. This allows it to smooth away the noise 
of instantaneous rates.  

B. Sample Size Estimation Algorithm 

Time is divided into (non-overlapping) equal observation 
periods (referred to as time intervals). The sample size (the 
number of monitoring packets inserted into the traffic) for the 
current time interval can be adaptively adjusted based on the 
rate of the previous time interval reported by the rate estimator. 

   The number of monitoring packets to be inserted in the 
current time interval is adaptively adjusted with the estimated 
traffic rate. Upon the arrival of each time interval, the sample 
size is updated as: Sample_ size = Avg_rate * Time_interval / 
(Block_ size * Pkt_size). Whereas Pkt_size is the average 
packet size, Block_size is the average number of data packets 
between two monitoring packets. This parameter can be chosen 
based on the tolerable overhead (monitoring packets are 
considered as overhead for user traffic). The Sample_size is the 
number of monitoring packets for the current Time_interval. 

C. Embedded Monitoring Packets   

We employ and improve the embedded monitoring method 
[15] by adaptively generating monitoring packets into the user 
traffic instead of periodically. Based on the above mentioned 
calculated Sample_size, the current time interval is divided into 
the timer periods following Timer = Time_interval / 
Sample_size. One monitoring packet is then time-wise 
randomly inserted per timer period. 

Each monitoring packet is stamped with a timestamp. 
Receiving monitoring systems detect the monitoring packets 
through a unique protocol number in the header, and keep track 
of the number of received packets sent from the entry node.  

III. MPLS-BASED IP NETWORK MODEL 

Two relatively simple but representative network topologies 
based on an MPLS-based IP network are used in our 
simulations. The first one is the so-called simple network 
topology used to verify the operation of the adaptive sampling 
method under self-induced congestion. The second topology 
with competing traffic streams is used to demonstrate the 
effects of competing traffic on the performance of the sampling 
methods. 

A. Experimental Simple Network Model  

The basic setup of the simple MPLS network model is 
illustrated in Figure 1, and also almost the same topology is 
implemented with OPNET 8.0 simulation tool for our 
experimental analysis of adaptive sampling techniques in 
Section 4. 
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Figure 1 MPLS simple networks 

In our simulation model, a static LSP is used. The edge 
routers are connected via a logical LSP. The LSP is in 
congestion as its capacity is less than the sum of the 
bandwidths required by all the sources of the LSP. Each end 
host group (gateway) consists of multiple users. Therefore the 
traffic stream traversing the simulation network is an 
aggregation of multiple individual flows. The goal is to 
measure and estimate the packet loss, delay and delay variation 
for the aggregate IP traffic generated by different source 
models. 



B. Experimental Network Model with Competing Traffic 

The network model shown in Figure 2 is designed to 
evaluate the performance of the adaptive sampling method 
when there is competing traffic on the observed path. Choosing 
different volumes of the competing traffic, the LSP 1 may 
become congested as it competes with the competing traffic for 
enough bandwidth to carry its traffic. We can investigate the 
LSP1 measurement entities under impact by the competing 
traffic and compare the performance of the adaptive sampling 
with the conventional sampling methods under different traffic 
models. 

            

IV. ANALYSIS OF SIMULATION RESULTS 

Simulations are carried out to evaluate the performance of 
different sampling algorithms under the two MPLS-IP based 
network models. The proposed adaptive sampling and two 
conventional sampling methods (systematic and stratified 
sampling) have been evaluated. The comparisons of different 
sampling techniques are conduced with equal block size so that 
the results are comparable. The variances of the estimates can 
be used to calculate confidence intervals. A higher variance 
corresponds to a larger confidence interval and a lower 
accuracy. We will show that the improvement in precision is 
achieved by adaptively adjusting the sampling rate based on 
actual traffic rate. This makes it possible to meet a given 
accuracy requirement by sampling much fewer packets than 
other sampling techniques would require.  

A. Simple Topology with Voice Traffic 

In these experiments, we use voice traffic as the network 

input source. The voice-sampling rate is set to 64 Kbps. Each 
packet contains 172 speech bytes. An active voice user 
generates one packet per 16ms.  There are 50 voice users 
generating about 1.5 Mbps aggregated traffic load from source 
to destination. The length of simulation runs is setup to be 10 
minutes. The number of replications is set to 20. For each 
experiment the mean value and the standard deviation for the 
estimation results from the 20 rounds are calculated and 
compared with the actual value measured with the user traffic.  

 

In Figure 3 delay values and their respective 95% 
confidence intervals are plotted against block sizes. We observe 

in this experiment that the true value of the estimated quantity 
lies within or very close to the confidence interval for the 
adaptive sampling without exception. The confidence interval 
is increased as the block size increases. Nevertheless, the 
adaptive sampling clearly gives more accurate estimated results 
than conventional samplings, but this better accuracy becomes 
less significant when block size becomes large. 

   In Figure 4 delay jitters, along with their respective 95% 
confidence intervals, are plotted against different block sizes,. 
With small block sizes, the values obtained by adaptive 
sampling and the stratified sampling methods provide a good 
fit for the estimated points. The confidence interval for the 
adaptive sampling is smaller than that for the stratified 
sampling in all cases, but this improvement starts getting less 
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Figure 2 MPLS with competing traffic 
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Figure 3 Delay vs. Block size – voice traffic



when the block size exceeds 600 packets.  

 

Figure 5 shows the loss ratios computed by the monitoring 
packets with these three different sampling methods. Compared 
with the true value (which is 0.8% in this test), the loss ratio of 
the systematic sampling is quite a bit higher, while adaptive 
and stratified sampling achieves values almost equal to the true 
value. Thus, the loss ratio can be estimated quite closely by 
simply counting the adaptive and stratified samples instead of 
all the packets. 

 

B. Competing Traffic for Voice 

The competing traffic model is developed to demonstrate 
the effects of competing traffic on the performance of the 
sampling methods. The traffic stream from LSR1 to LSR3 is 
called the monitored traffic, since the monitoring packets are 
inserted based on this traffic stream. The competing traffic is 
sent from LSR4 to LSR3, passing through LSR2. The 
monitored traffic and the competing traffic are merged at LSR2. 
With the volume of competing traffic increasing, the network 
performance under the adaptive and stratified sampling 
methods are simulated and evaluated with different block sizes. 
In this simulation, the simulation time is set as 10 minutes, and 
the number of replications is set to 20. 

 Figures 6 and 7 show the delay and the delay jitter with a 
95% confidence interval estimated by the adaptive and the 
stratified sampling. As the competing traffic increases, the 
mean values of the delay are increased. We observe that in this 
experiment, the true value of the estimated quantity lies within 
the confidence interval for the adaptive and stratified sampling 
without exception. The confidence interval for adaptive 
sampling is smaller than that for stratified sampling. Thus, 
adaptive sampling can provide more precise estimations on 
delay and delay variation under the effect of the competing 
traffic.   

Figure 8 shows the loss ratio computed by the monitoring 
packets with these two different sampling methods. As the 
competing traffic increases, the loss ratio of the monitored user 
traffic is changed from 0.8% to 5.8%. Compared with the true 
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Figure 5 Loss ratio vs. Block size – voice traffic 
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values, the loss ratios of the stratified and the adaptive 
sampling methods maintain values almost the same as the true 
value. Thus, the loss ratio can still be estimated by simply 
counting the adaptive and stratified samples instead of all the 
packets under the effect of the competing traffic. 

 

V. CONCLUSIONS 

In this paper, we have proposed and evaluated the 
performance of an adaptive sampling method for measuring the 
network performance of MPLS-enabled networks supporting 
voice traffic. Through comparisons with the conventional 
sampling methods, the advantages of the adaptive sampling are 
presented through a set of numerical results. In brief, the 
adaptive sampling performs better than all other methods on 
voice traffic. Furthermore, we demonstrated that the competing 
traffic has less limited impact on the sampling results when 
evaluating network the performance of the observed traffic 
stream.  
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