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ABSTRACT Recently self-similar (or fractal) stochastic pro-
cesses were proposed as more accurate models of certain cat-
egories of tra�c (e.g., Ethernet tra�c, variable-bit-rate video)
which will be transported in ATM networks.

Existing analytical results for the tail distribution of the wait-
ing time in a single server queue based on Fractional Gaussian
Noise and large deviation theory, are valid under a steady-state
regime and for asymptotically large bu�er size. However, pre-
dicted performance based on steady-state regimes may be overly
pessimistic for practical applications. Theoretical approaches to
obtain transient queueing behavior and queueing distributions
for small bu�er size become quickly intractable.

The approach we followed in this paper was based on fast
simulation techniques for the study of certain rare vents such as
cell losses with very small probability of occurrence. Our simu-
lation experiments provide insight on transient behavior that is
not possible to predict using current analytical results. Finally,
they show good agreement with existing results when approach-
ing steady-state.

I. INTRODUCTION

Recent extensive measurements of real tra�c data, mainly at
Bellcore [1], have led to the conclusion that Ethernet tra�c can-
not be su�ciently represented by traditional models, but instead
can be more accurately matched by self-similar (fractal) mod-
els [2, 3]. More recently, variable-bit-rate (VBR) video tra�c
was also found to exhibit self-similar characteristics, similarly to
LAN tra�c [4].

A crucial feature of self-similar processes is that they exhibit
long range dependence (LRD), that is, their autocorrelation func-
tion decays less than exponentially fast. This is in contrast to
traditional stochastic models, all of which exhibit short range
dependence (SRD), i.e., have an autocorrelation function that
decays exponentially or faster. The serious implication for ATM
network design is that, conclusions based on traditional models
may not be applicable under the self-similar tra�c scenario.

There have been, in general, only a few analytical results re-
ported in this area, with the notable exception of [5] and [6],
where asymptotic expressions for the steady-state waiting time
in single-server queues were derived by generalizing large devia-
tion theorems to include self-similar processes. Analytical work
related to this subject can also be found in [7].

Results in [5, 6] deal with the steady-state asymptotics for
a single-server queue under Fractional Gaussian Noise (FGN).
While the self-similar property captures the burstiness of tra�c
at all time scales, realistic ATM networks are expected to have a
limiting time scale. Therefore, predicted performance based on
a steady-state regime may be overly pessimistic for practical ap-

plications. Furthermore, analytical approaches become quickly
intractable.

Given the di�culties in analysis, simulation can play an im-
portant role in the study of network performance under self-
similar tra�c. While several approaches have been proposed for
the synthetic generation of self-similar tra�c traces (e.g., Hosk-
ing's method [8], Mandelbrot's fast fractional Gaussian noise ap-
proach [9], nonlinear chaotic maps [10]), they are, in general, ef-
�cient for generating only small numbers of relative long traces.
Due to the long term dependent structure of self-similar traf-
�c, accurate statistics can be obtained only from a large number
of replications. This is especially true in ATM networks where
one may want to simulate events that are rare, e.g., cell losses
with probability < 10�9. For this task, conventional simulation
techniques can be extremely ine�cient.

In this paper we present a fast simulation approach based
on importance sampling (IS) and Hosking's method in [8]. Us-
ing this approach we simulate the transient queueing behavior of
certain self-similar arrival processes, namely discrete-time FGN.
We show that our transient results asymptotically approach the
steady-state results in [5]. We verify experimentally the exis-
tence of a certain time scale at which the transient result is a
good approximation for steady-state. Furthermore, we apply
our approach to the simulation of the multiplexing e�ect under
both homogeneous and heterogeneous tra�c sources.

We focus on the following key issues in ATM network design:
the bu�ering gain, i.e., the reduction in cell loss probability as
the bu�er size increases, and the multiplexing gain, i.e., the re-
duction in cell loss due to statistical smoothing when multiple
bursty sources are aggregated. If we de�ne the burstiness of self-
similar tra�c as the Hurst parameter [11], our results indicate
that, the higher the burstiness, the lower the bu�ering gain, as
predicted by large deviation results. Our results also agree with
the predictions that, compared with SRD models, self-similar
models show smaller bu�ering gains. On the other hand, per-
haps contrary to common belief, our results indicate signi�cant
gains from multiplexing. These multiplexing gains increase with
the burstiness (Hurst parameter) of the self-similar tra�c.

In addition to these results, we show that multiplexing two
heterogeneous self-similar sources, the steady-state behavior will
be dominated by the burstier one, as predicted by large devia-
tion theory. Therefore, when a process possesses both long range
and short range dependence structures, e.g., the fractional au-
toregressive integrated moving-average (F-ARIMA) model, the
steady-state will only re
ect the contribution of long range de-
pendence. This again emphasizes the need for transient in addi-
tion to steady-state analysis.

This paper is organized as follows: In Section II we present a
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brief introduction to self-similar tra�c models and the existing
large deviations results. In Section III we describe the self-similar
tra�c model we use, namely discrete-time FGN, and Hosking's
method for generating traces from it. In Section IV we develop
an importance sampling technique for self-similar models. In
Section V we present simulation results. Finally, in Section VI
we summarize our conclusions and implications of this study for
the design of ATM networks. In the Appendix, we generalize
results in [5] to include multiplexing e�ects (required in order to
compare with our simulation study).

II. SELF-SIMILAR TRAFFIC MODELS

A. DEFINITION OF SELF-SIMILARITY
LetX = fXk : k = 1; 2; : : :g be a covariance stationary stochastic
process, that is, a process with constant mean m = E[Xk], �nite
variance �2 = E[(Xk �m)2], and an autocorrelation function as
follows:

r(k) � k��L(k); as k !1; (1)

where 0 < � < 1, and L(k) is slowly varying at in�nity, i.e.,
limt!1 L(tx)=L(t) = 1, for every x > 0 [1]. For each n =
1; 2; 3; : : :, let

X
(n)
k = 1=n(Xkn+Xkn�1+� � �+Xkn�(n�1)); k = 1; 2; 3; : : : (2)

then the time series X(n) = fX(n)
k : k = 1; 2; 3; : : :g is also a

covariance stationary process. Let r(n)(k), k = 1; 2; : : :, denote
the corresponding autocorrelation function. If

r(n)(k) = r(k); for all n = 1; 2; 3; : : : and k = 1; 2; 3; : : : (3)

then the process X is called exactly second-order self-similarwith
Hurst parameter H = 1��=2. The process X is called asymptoti-
cally second-order self-similarwith Hurst parameterH = 1��=2,
if

r(n)(1) ! 21�� � 1; as n!1; (4)

r(n)(k) ! 1=2�2(k2��); as n!1 (k = 2; 3; : : :); (5)

where �2(f(k)) = f(k + 1)� 2f(k) + f(k� 1).
De�nitions of self-similar processes in a more general sense

can be found in [2]. Intuitively, one of the most striking features
of such processes is that their aggregated processes X(n) possess
a nondegenerate correlation structure as n!1. An important
recent development in tra�c modeling is that Leland et al. [1]
have found that Ethernet tra�c satis�es (3), and Beran et al. [4]
have shown that VBR video tra�c also satis�es (3).

B. DEFINITION OF THE FGN PROCESS
While there are numerous stochastic models which exhibit the
self-similar property, two of them, namely the exactly self-similar
fractional Gaussian noise (FGN) and the asymptotically self-
similar fractional autoregressive integrated moving-average (F-
ARIMA) process, are the most commonly used. FGN can be
viewed as a reasonable �rst approximation of more complex LRD
processes, since it can be derived from a special type of central
limit theorem applied to LRD processes. While we consider only
FGN models in this paper, our approach can be easily extended
to include F-ARIMA models. The advantage of F-ARIMA mod-
els is that they can model both long time dependence and short
time dependence at the same time [12].

A fractional Gaussian noise process X = fXk : k = 1; 2; : : :g
is a stationary Gaussian process with mean m = E[Xk], variance
�2 = E[(Xk �m)2], and autocorrelation function

r(k) = 1=2(jk + 1j2H � 2jkj2H + jk� 1j2H); k = 1; 2; 3; : : : (6)

Therefore, if 1=2 < H < 1, FGN is exactly second-order self-
similar with Hurst parameter H.

C. LINDLEY EQUATION AND LARGE DEVIATIONS
Now consider a slotted-time single server queue with determin-
istic service rate � and a FGN arrival process X, with Xk rep-
resenting the number of arriving cells within the kth time slot.
Here, we assume Xk can take any real value. Let Qk denote the
size of the queue at time k = 0; 1; : : :. Assuming Q0 = 0, we have
the following Lindley equation [13]:

Qk = hQk�1 +Xk � �i+ = hQk�1 + Yki
+; for k = 1; 2; : : : (7)

where we de�ne the process Y = fYk : Yk = Xk � �; k = 1; : : :g
as work load process. Now de�ne the total work load processW
as fWk :Wk =

Pk

i=1
Yi; k = 1; 2; : : :g. ThenW is an stationary

increment Gaussian process with mean mk � �k and variance
�2k2H . Therefore, since X is a stationary process, we have

Pr(Qk > b) = Pr( sup
0�i�k

Wi > b); for k = 0; 1; 2; : : : (8)

Du�eld et al. [5] have shown the following steady-state, large
deviation result:

lim
b!1

b2(1�H) log Pr(Q1 > b) = �c�2(1�H)(c+ �)2=2 (9)

where c = �=H � � and � > 0. Therefore, in contrast to tradi-
tional SRD models, the steady-state queueing distribution decays
asymptotically in a Weibull fashion rather than exponentially.
Thus the performance predicted under FGN may be far worse
than under traditional models.

Traditional models attempt to capture the burstiness of the
tra�c at di�erent time scales by using complex hierarchical struc-
tures (such as Markov Modulated Arrival processes). In contrast,
self-similar models capture long range dependence in a parsimo-
nious manner which makes them extremely attractive from the
standpoint of modeling realistic LRD tra�c [1].

Results in [5] deal with the steady-state asymptotics for a
single-server queue under FGN. While the self-similar property
captures the burstiness of tra�c at all time scales, realistic ATM
networks are expected to have a limiting time scale. Therefore,
predicted performance based on a steady-state regime may be
inaccurate for practical applications. Furthermore, questions re-
garding the transient behavior, small bu�er sizes, multiplexing
e�ects, and, in general, the performance of ATM networks under
LRD tra�c, remain unanswered. In the following, we develop a
simulation approach that can be used to answer the above ques-
tions.

III. GENERATION OF FGN TRACES
We brie
y describe Hosking's generation procedure [8] in the
following paragraphs.

For a FGN process X with m = 0, the conditional mean and
variance of Xk, given the past values xk�1; xk�2; : : : ; x1, may be
written as [14]

mk = E(Xkjxk�1; xk�2; : : : ; x1) =

kX

j=2

�kjxk�j (10)

vk = Var(Xkjxk�1; xk�2; : : : ; x1) = �2
kY

j=2

(1� �2jj) (11)

Here �jj is the jth partial correlation coe�cient of fXkg and
the �kj are partial linear regression coe�cients. For simulating
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a sample fx1; x1; : : : ; xn�1g of size n from a FGN process, [8]
describes the following algorithm:

1. Generate a starting value x1 from a Gaussian distribution
N(0; v1). Set N1 = 0, D1 = 1.

2. For k = 2; : : : ; n�1, calculate �kj, j = 2; : : : ; k, recursively
via the equations

Nk = r(k) �

k�1X

j=2

�k�1;jr(k) (12)

Dk = Dk�1 �N2
k�1=Dk�1 (13)

�kk = Nk=Dk (14)

�kj = �k�1;j � �kk�k�1;k�j j = 2; : : : ; k � 1 (15)

Calculate mk =
Pk

j=2 �kjxk�j and vk = (1��2kk)vk�1. Generate

xk from the Gaussian distribution N(mk; vk).

The above method is applicable to any Gaussian process as
long as the correlation function r(k) is known. However, the
computational e�ort required increases approximately as O(n2)
with the length of the trace, n.

Given the computational cost of trace generation, the num-
ber of replications required becomes crucial, especially when an-
alyzing ATM networks where one may want to simulate events
that are rare, e.g., cell losses with probability < 10�9, or ex-
tremely long cell waiting times. In the following, we develop
a fast simulation approach based on importance sampling, that
makes Hosking's method applicable to quality-of-service (QoS)
evaluation in ATM networks.

IV. IMPORTANCE SAMPLING FOR THE FGN PROCESS

A. IMPORTANCE SAMPLING THEORY
Let U be a random variable that has a probability density
function p(u) and consider estimating the probability P that
U is in some set A, then P =

R1
�1

IA(t)p(t)dt = Ep[IA(U)],

where IA(�) is the indicator function of event A. Assume that
p0(u) is another density function. Assuming that p(u) = 0
whenever p0(u) = 0 (absolute continuity condition), we have

P =
R1
�1

IA(t)
p(t)
p0(t)p

0(t)dx = Ep0 [IA(U)
p(U)
p0(U) ] = Ep0 [IA(U)L(U)]

where L(u) = p(u)=p0(u) is a likelihood ratio (weight function)
and the notation p0 denotes sampling from the density p0(u).
This equation suggests the following variance reduction estima-
tion scheme which is called importance sampling (IS) (see [15]
and references within): Draw N samples u1; : : : ; uN using the
density p0. Then, an unbiased estimate of P is given by P̂N
= 1

N

PN

n=1 IA(un)L(un), i.e., P can be estimated by simulating
a random variable with a di�erent density and then unbiasing
the output IA(un) by multiplying with the likelihood ratio. We
call p0(u) the twisted density. Since any density can be used
as the twisted density, the question arising is which is the opti-
mal twisted density, i.e., which is the density that minimizes the
variance of P̂ . A variety of approaches, namely analytical, large
deviation-based, and statistical have been proposed in order to
choose p0(u) ([15, 16, 17] and references within).

B. TWISTED DENSITY AND LIKELIHOOD RATIOS
Without loss of generality, we assume in the following that we
want to simulate a queueing process with a FGN arrival process
X as de�ned in Section II.B, with mean value m = 0. De�ne a
new process Y0 = fY 0(k) : Y 0(k) = X(k) +m�; k = 1; : : :g. It
is easy to see that process Y0, the twisted work load process, is a
FGN process with meanm�, and that its variance and correlation

function are the same as forX. Given a realization (y01; : : : ; y
0
k�1)

of process Y0, the corresponding realization of process X satis�es
xj = y0j �m�, for j = 1; 2; : : : ; k � 1. From equations (10){(11),

EY 0(Y 0k jy
0
k�1; : : : ; y

0
1) = m� + EX(Xkjy

0
k�1 �m�; : : : ; y01 �m�)

=m� + EX(Xkjxk�1; : : : ; x1) = m� +

kX

j=2

�kjxk�j

=m� +

kX

j=2

�kj(y
0
k�j �m�) =m� +mk;Y 0 (16)

for k = 2; 3; : : :, where mk;Y 0

4
=
Pk

j=2
�kj(y

0
k�j�m

�). Also from

equations (10){(11)

VarY 0(Y 0k jy
0
k�1; : : : ; y

0
1) = VarX(Xkjxk�1; : : : ; x1) (17)

In IS simulation, we simulate a twisted work load process Y0

instead of the work load process Y. In order to calculate the
required likelihood ratio, we let (y01; : : : ; y

0
k�1) be also taken as a

realization of the work load process Y, as de�ned in Section II.C.
Then, for k = 2; 3; : : :, we have

EY (Ykjy
0
k�1; : : : ; y

0
1) = ��+

kX

j=2

�kj(y
0
k�j + �) = �� +mk;Y

(18)

where mk;Y
4
=
Pk

j=2 �kj(y
0
k�j + �). We also have

VarY (Ykjy
0
k�1; : : : ; y

0
1) = VarY 0(Y 0k jy

0
k�1; : : : ; y

0
1) (19)

The likelihood ratio up to time k is

L(k) =
fY (y

0
1; : : : ; y

0
k)

fY 0(y01; : : : ; y
0
k)

=
fY (y

0
1)fY (y

0
2jy

0
1) � � � fY (y

0
kjy

0
k�1; : : : ; y

0
1)

fY 0(y01)fY 0(y02jy
0
1) � � � fY 0(y0kjy

0
k�1; : : : ; y

0
1)

=

kY

i=1

Li (20)

where, for i = 2; 3; : : : ; k,

Li =
fY (y

0
ijy
0
i�1; : : : ; y

0
1)

fY 0(y0ijy
0
i�1; : : : ; y

0
1)
; L1 =

fY (y
0
1)

fY 0(y01)
(21)

Then, from equations (16) to (18), we have

Li =
e�iyi

Mi
for i = 2; 3; : : : ; L1 = e

�
2(m�+�)x0+(m

�+�)2

2�2 (22)

where

�i = �
��mi;Y +m� +mi;Y 0

�2
Qi

j=2
(1� �2jj)

(23)

and Mi = e��i=2(��mi;Y �m
��mi;Y 0 ).

The probability Pr(Qk > b) can be estimated by observ-

ing N iid replications of the realization w
(n)
1 ; : : : ; w

(n)
k of W, for

n = 1; : : : ;N . Let L(n), n = 1; : : : ;N , denote the correspond-
ing likelihood ratio for each replication. Then, we propose the
following simulation procedure for estimating Pr(Qk > b):

1. Initialize i = 1; n = 1;
2. Generate a sample point xi by Hosking's method described

in Section III;
3. Generate a sample point y0i by the equation y0i = xi +m�;
4. Generate a sample point wi by replacing the process Y

with the process Y0 in the de�nition of total work load process;
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5. If wi � b and i < k, then repeat from step 2 with i = i+1;
otherwise continue with step 6;

6. If wi � b and i = k, set In = 0 and go to step 8; otherwise
continue with step 7;

7. Set In = 1 and calculate L(n) = L(i) via equations (20)
to (22);

8. If n = N evaluate the estimate using P̂ = 1
N

PN

n=1 InL
(n);

otherwise set n = n + 1, i = 1 and goto step 2.

C. OPTIMAL TWISTED MEAN VALUE

Based on the above description, we can apply IS by suitably mod-
ifying (twisting) the mean of the arrival process. However, an
e�cient method to obtain a favorable (or near-optimal) twisted
mean remains to be devised. In this paper, we describe two such
methods, namely a heuristic search and an approximate analyt-
ical approach. The heuristic search approach has been success-
fully applied to traditional (SRD) models (see [16] and references
within), and will be brie
y explained in Section V.

We now focus our attention on the approximate analyti-
cal approach. From equation (8), we have Pr(Qk > b) >

max0�i�k Pr(Wi > b)
4
= PW;k. This approximation, which

is an optimistic bound for Pr(Qk > b), becomes quite accu-
rate for any time k, when b is large. Furthermore, as time k
grows large, it can be shown that there exists a value k = ks

such that PW;1
4
= maxi�0 Pr(Wi > b) ' Pr(Wks > b), where

ks = db=ce, and c is de�ned in equation (9) [5]. Therefore,
for k > ks, PW;k ' Pr(Wks > b). Thus, loosely speaking, ks
is the time when the queueing state enters steady-state, and
Pr(Q1 > b) ' Pr(Wks > b). A very accurate approximate for-
mula for calculating Pr(Wks > b) (i.e., the tail of a Gaussian
distribution) was recommended in [18]. The above approxima-
tion procedures lead to quite accurate results, as our results in
Section V indicate.

Since Pr(Q1 > b) ' Pr(Wks > b), our approximate ana-
lytical approach consists of �nding a near-optimal mean twisted
value for Pr(Wks > b) and then applying that same twisted value
to the simulation of Pr(Q1 > b). Since Wks is normally dis-
tributed with mean ��ks and variance �2k2Hs , a near-optimal
twisted mean value can be readily obtained by minimizing the
likelihood ratio L(k) as suggested in [17]. Following this pro-
cedure we �nd a twisted mean value m�W;opt ' cks. Hence, a
near-optimal twisted mean value for process Y can be found by
m�opt =m�W;opt=ks ' c = �=H��. Furthermore, it is reasonable
to assume that m�opt is also near-optimal for the estimation of
the (transient) probability Pr(Qk > b) when k > ks.

V. NUMERICAL RESULTS

For IS simulation, the estimator P̂ of the unknown probability
Pr(Qk > b) is a function of (m;m�; �;H; k; b; N;�2). Since our
set-up is translation-invariant with respect tom, we assume m =
0 without loss of generality. We let � be �xed at � = 1, since as
shown in the Appendix, by changing the number of multiplexed
homogeneous sources L, we can observe the same e�ect as if
scaling �.

We divide our simulation experiments into two cases, one
with H = 0:7, which represents less bursty tra�c, and one with
H = 0:9 representing more bursty tra�c. In each case, we con-
sequently discuss dependence on the twisted mean value m�, on
service rate �, on stopping time k, on the bu�er size b, and on
the number L of multiplexed homogeneous sources. By homo-
geneous sources we mean sources which have the same Hurst
parameter, H. In the �nal part, we simulate multiplexing two

heterogeneous sources, one with H = 0:7 and one with H = 0:9.
We also provide example values of the improvement factor of our
IS technique over conventional MC simulation.

A. CASE I: H = 0:7

All simulations are based on 1000 iid replications, except in
Fig. 2.

1. The dependence on m�:

It is important to point out that the IS estimator of Pr(Qk > b)
is always unbiased, regardless of the value of m�. However, the
sample path properties as well as the variance of the IS estimator
are dramatically a�ected by the choice of m�. This is the basis
for the heuristic search procedure for the optimal twisted mean
value, described in [16]. Fig. 1 is an example of plotting the es-
timated Pr(Qk > b), while Fig. 2 plots the normalized variance
�2
P̂
=P̂ 2 of P̂ , both versus the twisted mean value m�. The value

corresponding to m� = �0:5 is in fact the result of direct (con-
ventional) Monte Carlo (MC) simulation. We can see that, as
m� increases, the normalized variance exhibits a clear \valley"
around the most favorable values of m�. This behavior, as well
as the behavior of the estimated Pr(Qk > b) versus m�, is dis-
cussed in detail in [16] and the references therein. The minimum
normalized variance appears around m� = 0:2 which coincides
with the approximate value m�opt of Section IV.C.

            Twisted mean value  m*
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b)

k
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 IS with 10000 replications
IS with 1000 replications

Figure 1: Estimated log Pr(Q1 > b) versus the twisted mean
value m�. The Hurst parameter is H = 0:7.
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Figure 2: Normalized variance �2
P̂
=P̂ 2 of estimated log Pr(Q1 >

b) versus the twisted mean value m�. The Hurst parameter is
H = 0:7.

2. The dependence on �:

Fig. 3 shows the estimated log Pr(Q1 > b) versus the service
rate �. In all simulations, we apply the IS technique using the
near-optimal twisted mean value of Section IV.C. Our simulation
result is compared with the optimistic bound of Section IV.C.

4



Service rate µ
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Figure 3: Estimated log Pr(Q1 > b) versus the service rate �.
The Hurst parameter is H = 0:7.

3. The dependence on k:

Fig. 4 depicts the estimated log Pr(Qk > b) versus the stopping
time k. The dependence of log Pr(Qk > b) on k re
ects the
transient nature of our experiments. The curves show how the
queue approaches asymptotically the steady-state as k increases.
In order to see how the time of entering steady-state depends
on the bu�er size b, in Fig. 4 we show results with di�erent
bu�er sizes. For b = 20, we also show the direct MC simulation
result in order to illustrate that the IS approach is in agreement
with direct simulation. When b becomes larger, direct simulation
becomes exceedingly long. In this case, IS simulation provides
good results with only a minimal number of replications. Notice
that the empirically observed times of entering steady-state are
very close to the ks predicted in Section IV.C, with c = �=H��.
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IS with b=100C

IS with b=50B

IS with b=20A
MC with b=20

Stopping time k

Figure 4: Estimated log Pr(Qk > b) versus stopping time k.
The Hurst parameter is H = 0:7.

4. The dependence on b:

We simulate the dependence of log Pr(Qk > b) on b for two stop-
ping times k: one is time ks predicted in Section IV.C, and the
other is 2 � ks. We compare our simulation results with the
large deviation result of equation (9) and the optimistic bound
of Section IV.C, in Fig. 5. It can be seen that, with increasing
stopping time, the results approach the large deviation bound,
which is a steady-state result.

5. The dependence on L:

Fig. 6 shows the estimated log Pr(Qk > b) versus the number of
homogeneous multiplexed sources L, for H = 0:7. Fig. 6 also
depicts the optimistic bound of Section IV.C. The service rate is
in fact L�� in order to maintain the same load on the queue. The
multiplexing gain (i.e., reduction in Pr(Qk > b) with increasing
L) is evident.
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Figure 5: Estimated log Pr(Qk > b) versus the bu�er size b.
The Hurst parameter is H = 0:7.
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Figure 6: Estimated log Pr(Qk > b) versus the number of mul-
tiplexed sources L. The Hurst parameter is H = 0:7.

B. CASE II: H = 0:9

The simulation procedures are basically the same as for H = 0:7.
Therefore, we only comment on those features which are di�erent
from previous experiments. All simulations are based on 1000 iid
replications.

1. The dependence on �:

Fig. 7 shows the estimated log Pr(Qk > b) versus the service rate
�, for H = 0:9. Comparing this result with Fig. 3, we see that
increasing � is more e�cient for burstier sources.

Service rate µ

lo
g 

Pr
(Q

  >
b)

k

-8

-7

-6

-5

-4

-3

-2

-1

0

0.5 1 1.5 2 2.5 3

Optimistic bound

IS result

Figure 7: Estimated log Pr(Qk > b) versus the service rate �.
The Hurst parameter is H = 0:9.

2. The dependence on b:

Fig. 8 depicts the dependence of the estimated log Pr(Qk > b) on
b, for H = 0:9. Comparing this result with Fig. 5, we �nd that
increasing the bu�er size is more e�cient in reducing the over
ow
probability than for less bursty sources (H = 0:7), while always
less e�cient than for SRD models (estimated log Pr(Qk > b)
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decays less than exponentially fast).
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Figure 8: Estimated log Pr(Qk > b) versus the bu�er size b.
The Hurst parameter is H = 0:9.

3.The dependence on L:

Fig. 9 shows the estimated log Pr(Qk > b) versus the number
of multiplexed sources L, for H = 0:9. Comparing Fig. 9 with
Fig. 6, we see that increasing the number of multiplexed sources
leads to higher gains (larger reductions in over
ow probability)
for burstier sources (higher values of H). We can easily check
that the abovementioned dependency of Pr(Q1 > b) on �; b; L
is in agreement with the large deviation result (9).
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Figure 9: Estimated log Pr(Qk > b) versus the number of mul-
tiplexed sources L. The Hurst parameter is H = 0:9.

C. MULTIPLEXING HETEROGENEOUS SOURCES

Fig. 10 shows the result of multiplexing two self-similar sources,
one with H = 0:7 and another withH = 0:9. As we aggregate the
two arrival sources, we also increase the total service rate in order
to maintain constant load, and observe the gain from increased
bu�er capacity. As shown in Fig. 10, the burstier source (H =
0:9) will dominate the queueing tail distribution, which agrees
with the large deviation result in the Appendix.

D. IS IMPROVEMENT FACTOR

The speed-up or improvement factor of IS over conventional MC
simulation denotes the relative decrease in the required num-
ber of replications in order to achieve the same statistical ac-
curacy. Let �2MC(N) denote the estimator variance after N
replications using conventional MC simulation. Furthermore,
let �2IS(N) denote the estimator variance after N replications
using IS simulation. Then the improvement factor is de�ned
as �2MC(N)=�2IS(N). Fig. 11 shows the estimated improvement
factor versus bu�er size, b, for Case I. (H = 0:7), and Case II.
(H = 0:9), respectively.

We observe signi�cant improvement factors for both cases.
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Figure 10: Estimated log Pr(Qk > b) versus the bu�er size b
(heterogeneous sources, one with H = 0:7, the other with H =
0:9). Each simulation is based on 1000 iid replications.

The improvement factor increases dramatically as the bu�er size
increases (i.e., as the over
ow probability decreases), as is desir-
able.
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Figure 11: Estimated IS improvement factors over conventional
MC simulation. Improvement factors denote the ratio of required
number of replications for the same statistical accuracy, and are
plotted here versus bu�er size, b, for Case I. (H = 0:7), and Case
II. (H = 0:9), respectively.

VI. CONCLUSIONS

Theoretical and simulation approaches applicable to tradi-
tional (short range dependent) tra�c models may not be able
applicable to self-similar processes due to their long range de-
pendence. Predicted performance based on steady-state may
be overly pessimistic for practical applications. Theoretical ap-
proaches to obtain transient queueing behavior and queueing dis-
tributions for small bu�er size become quickly intractable.

In this paper, we have developed a fast simulation approach
that can be used to simulate self-similar tra�c in ATM net-
works e�ciently. Using this approach, we have simulated the
queueing and multiplexing behavior of self-similar processes in
an ATM multiplexer, including the estimation of extremely low
cell-loss probabilities. Our simulation experiments provide in-
sight on transient behavior that is not possible to predict using
existing analytical results. Finally, they show good agreement
with existing results when asymptotically approaching steady-
state.
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VIII. APPENDIX

A. MULTIPLEXING HOMOGENEOUS SOURCES
Consider the aggregation of L independent FGN arrival processes
Xi = fXk;i, k = 1; 2; : : :g, i = 1; 2; : : : ; L, with zero mean, unit
variance and correlation function ri(k) = r(k); k = 0; 1; : : :,
where r(k) is de�ned in equation (6). Then, the aggregate tra�c

X
(L) =

PL

i=1Xi is again Gaussian, has zero mean, variance L
and the same correlation function r(k). Therefore, the aggregate
tra�c is also a FGN process. Thus the simulation procedures
described in Section IV.B are directly applicable with �2 = L.

B. MULTIPLEXING HETEROGENEOUS SOURCES
First, we brie
y summarize some important results that appear
in [5] which are necessary for our results. Due to space limita-
tions, we restrict our presentation to the very essentials leaving
most of the algebraic manipulations to be checked by the in-
terested reader. Furthermore, we urge the interested reader to
consult [5] and in particular hypotheses 2.1 and 2.2 and associ-
ated theorems 2.1 and 2.2.

We now consider the aggregation of two independent FGN
processes X1 and X2. We assume that X1 and X2 have zero
mean and unit variance. Their corresponding correlation func-
tions are de�ned as in (6) with H = H1 for X1 and H = H2 for
X2. We assume H1 > H2 and the service rate to be �. Then the
mean of total work load process W is �� k, k = 1; 2; : : :, and
the variance is k2H1 + k2H2 . We can show the following lemma:
Lemma 1. Let Xi, i = 1; 2, be two FGN tra�c processes

with zero mean, unit variance, and Hurst parameters Hi, i = 1; 2,
respectively. Let H1 > H2 and 1=2 < Hi < 1, i = 1; 2. Then the
queue length process resulting from the aggregate FGN tra�c
satis�es:

lim
b!1

b2(1�H1) log Pr(Q1 > b) = �c�2(1�H1)(c+ �)2=2 (24)

Proof: De�ne ak
4
= k, vk

4
= k2

k2H1+k2H2
, and hk

4
= k2(1�H1).

We �rst check the three parts of hypothesis 2.1 in [5]:
(i) It is easy to see that both ak and vk increase to in�nity,

and for all � 2 R

�(�) = lim
k!1

v�1k logEe�vkWk=ak =
�2

2
� �� (25)

(ii) It is also easy to check that �(�) is a smooth function and
there exists � > 0 for which �(�) < 0.

(iii) For each c > 0, we can show

g(c) = lim
k!1

v(a�1(k=c))

hk
= c2H1�2 (26)

Therefore hypothesis 2.1 of [5] is satis�ed, and we can easily get

��(x) = sup
�2R

f�x� �(�)g =
(x+ �)2

2
(27)

We now check condition (iii) in hypothesis 2.2 in [5] since
conditions (i) and (ii) can be checked in a straightforward
manner. We note that vk > k2�2H1=2. Hence e�
vk <

e�
k
(2�2H1)=2 for 
 > 0
The remaining conditions (iii) and (iv) of hypothesis 2.1 in

[5] follow after some algebra. Then by Theorem 2.1 and 2.2 in
[5] our lemma follows.

Clearly, we have the same result as in equation (9) with
H = H1. This indicates that the steady-state tail distribution is
dominated by the arrival process with the larger Hurst parame-
ter.
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