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Recent measurements based on long empirical traces have revealed that many impor-
tant types of tra�c (e.g., LAN, WAN and VBR video) possess long range dependent
(LRD) characteristics. Studies have shown that tra�c streams with LRD will su�er
higher cell loss rates than traditional models predict. Therefore network performance can
be signi�cantly degraded.
To reduce the cell loss rate, schemes based on predicted service have been proposed

in the literature. Predicted service uses tra�c monitoring to predict future bandwidth
requirements and dynamically allocate bandwidth whenever it is necessary. In this paper,
we propose a new tra�c predictor called the Double Threshold Moving Window Detector
(DTMW). Our analytical and simulation results show that DTMW can detect and predict
bandwidth requirements for LRD tra�c in a robust manner. DTMW is not sensitive to
the marginal distributions and short term characteristics of individual tra�c streams.

1. INTRODUCTION

Traditional tra�c models have in common that they are typically Markovian or, more
generally, short-range dependent (SRD) in nature, that is, their autocorrelation function
is summable (typically decays asymptotically exponentially fast). On the other hand,
measurements frommodern networks appear to give rise to empirical tra�c processes that
are generally non-Markovian in nature and exhibit long-range dependence (LRD). In other
words, empirical tra�c processes are characterized by slowly decaying autocorrelations
(hyperbolic or power decay) which, in turn, resemble self-similar or \fractal" tra�c [1{4].
The most striking feature of LRD tra�c is that burstiness is displayed across several time
scales (i.e., from milliseconds to years [1]). This burstiness can drive queueing systems
into over
ow more frequently than traditional models have predicted [5,6].
While there are numerous congestion control schemes proposed in the literature, they

can be generally classi�ed into three types [7]: The �rst type is called guaranteed service.
In recent years, several guaranteed service based algorithms have been developed (see,
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for example, [7] and references therein) that require certain burstiness constraints [8] at
the access node. A well-known such constraint is the so-called (�; �) constraint which can
be implemented by a \leaky bucket". Therefore, a network that uses guaranteed service
typically operates in a low utilization region.
The second type of congestion control approach does not provide for the worst-case

scenario, instead it guarantees a bound on the probability of lost packets based on statis-
tical characterizations of tra�c (see, for example, [9]). Such approaches focus on �nding
statistical results for the steady state of the network through a priori characterization of

ows based on a statistical model. For LRD tra�c, steady state results may still play
an important role in network planning or long term performance prediction. But as a
tool to predict the QoS of a single user session, steady state results cannot be used as in
traditional models. As our simulations indicated in [4], the cell loss rate of a single user
session may be far from the steady state results due to the inherent LRD structure. This
poses signi�cant challenges to the probabilistic service based approach [10]. In addition,
analytical and simulation results in [6] have shown that, when LRD tra�c is present,
the call acceptance region is nonlinear, in violation of the philosophy underlying e�ec-
tive bandwidths. Therefore, e�ective bandwidth solutions for LRD tra�c become a loose
bound and result in low network utilization again.
To overcome the problems discussed above, applying a dynamic bandwidth allocation

scheme seems unavoidable. A third approach, namely that of predicted service, is therefore
proposed in the literature. This approach takes into account recent measurements of the
tra�c load in order to estimate future requirements on network resources, and dynami-
cally allocates network resources to minimize the post facto delay bound and maximize
throughput [7]. Several protocols providing predicted service have been proposed (see,
for example, [7,11,12] and references therein). While these approaches di�er from each
other in how to react to congestion, they all require a well-behaved tra�c predictor. For
example, in [12], an RCBR (Renegotiated CBR) service discipline is introduced. Users of
RCBR service are given the option to renegotiate their service rate at any time. There
is a clear trade-o� between bu�er size, requested rate and the frequency of renegotiation.
For interactive applications, the renegotiation schedule cannot be calculated in advance.
Instead, the authors of [12] proposed a heuristic AR(1) �lter to predict future bandwidth
requirements. Although this AR(1)-based heuristic shows improvement over static band-
width allocation, it is still far from optimal as is pointed out in [12]. Typically, AR �lters
may introduce long response times which are sensitive to individual traces.
In [13] a predictor for Fractal Gaussian Noise (FGN) is devised and shown to have

good performance. Unfortunately, it requires a priori knowledge of the Hurst parameter
and is limited to the FGN process only. As shown in [3,4], real tra�c has an arbitrary
marginal distribution which may deviate far from the Gaussian distribution. Furthermore,
in interactive applications, it is not possible to estimate the Hurst parameter beforehand.
In summary, the detection of signi�cant and long-term changes in the characteristics of

a connection are key in providing users with the type of performance they expect while
allowing for e�cient usage of network resources. In the following sections, we will propose
a new tra�c prediction algorithm which can help solve some of previous problems. We
will initiate the presentation with intuitive arguments and then justify our solution based
on analytical and simulation results.
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Figure 1. (a) Implementation of DTMW; (b) Frequency of renegotiations versus threshold
T1 for the video trace \Last Action Hero".

2. THE DTMW SCHEME

Broadly speaking, for a process with LRD, high values are more likely to be followed
by high values and low values are more likely to be followed by low values. Therefore, in
a sense, it is possible to predict future sample values based on past values. Because self-
similar tra�c displays burstiness at all time scales and because the bu�er at the access
node can smooth e�ciently the burstiness at small time scales, our goal is to predict
the burstiness at relatively larger time scales. Therefore, the predictor should not be
too sensitive so as to respond to short-term burstiness. Based on these observations, we
introduce the Double Threshold Moving Window (DTMW) detector in the following.
Let N denote the window length, and T1 and T2 denote values of the �rst and second

threshold, respectively. De�ne the detection quantity SN (i); i = N;N +1; : : : as SN(i) =PN�1
j=0 I(Y (i� j) � T1) where I(:) is an indicator function and Y = fY (i); i = 1; 2; : : :g is

the input process. If SN (i) � T2, we set the detector output to 1, meaning that congestion
is about to occur in the near future, otherwise we set the detector output to 0.
It is easy to see that only a comparator, a single-bit shift register and a counter are

needed. An illustrative diagram is shown in Fig. 1(a). The �rst threshold T1 is set
to detect those high values that are larger than T1. The T2-out-of-N criterion is for
smoothing burstiness at small time scales and detecting the existence of burstiness at
large time scales. In the following paragraphs, we justify the above intuition using an
analytical approach.
A general analytical solution for the performance of the DTMW under arbitrary input

processes can be di�cult if not impossible. But, for certain types of sources, it is possible
to give analytical results. An example is the CBR model. It is easy to see that if the input
process Y is a CBR process, then DTMW will work as predicted in the last section with
a maximum initial response delay of N . In what follows, we analyze the performance of
the DTMW under the \marginal-transformed process" (MTP) model we proposed in [4].
It has been shown in [4] that this model is general enough to include most of the existing



4

models (e.g., FGN, F-ARIMA) and can match empirical data up to second-order statistics.
The following Proposition applies and further clari�es the DTMW algorithm. Due to

space restrictions the proof is omitted (see [14]).
Proposition 1. Let X = fXi; i = 0; 1; : : :g be a zero mean, unit variance Gaussian
process de�ned on a probability space (
;F ; P ) with autocorrelation function (rX(k) :
k � 0). Suppose rX(k) � k2H�2L(k) when k !1, where L(k) is a slowly varying function
of k and 1=2 < H < 1. Let Y = g(X), where g : R 7�! R is a nondecreasing function. If
0 < Pr(Y � T1) < 1 and T1 > 0, then the process ZN = fZN (j) = (SjN (jN) � Pr(Y �
T1)jN)=dN : j = 0; 1; : : :g with d2N � 2

(2H�1)2H
N2HL(N) converges weakly as N !1 to

J(1)BH(j) where J(1) = Pr(Y � T1) and process BH = fBH(t) : t � 0g is a Fractional
Brownian Motion (FBM) process with parameter H. 2
For the MTP model [4], function g(:) will be the marginal transformation function

which will always be nondecreasing. Other conditions in Proposition 1 will be generally
satis�ed except in degenerate cases. From the above proposition, we have the following
conclusions:
(1) For N large enough, the quantity (SN (i) � Pr(Y � T1)N)=dN , i � N , can be

approximated by a Gaussian distribution with variance equal to J2(1). This means that,
the detection quantity SN(i); i � N is totally decided by the LRD structure and Pr(Y �
T1). The in
uences of SRD structure and marginal distribution are removed by the
summation procedure in DTMW.
(2) For N and T2 large enough, the higher the Hurst parameter H, the larger the

probability with which DTMW outputs a value of 1.
These two conclusions justify the intuition given at the beginning of this section. Al-

though in practice N is always �nite, Proposition 1 can still be a useful guide for tuning
T1, T2 and N . While we will demonstrate the usage of DTMW through RCBR service
and real-time video applications in the following sections, it should be noted that DTMW
can be applied to other types of LRD tra�c as well as protocols (e.g., ABR) which also
focus on predicted services [7,11].

3. INTRODUCTION OF THE DTMW INTO THE ACCESS NODE

The selection of the measure of resource congestion has broad implications for the
implementation complexity, stability and performance of the corresponding system. While
our conclusions in the last section are based on monitoring the tra�c rate process, they
are also valid for monitoring the queueing increment process based on the following facts:
Consider a slotted-time single server queue with deterministic service rate � and an

arrival rate process A. Let Qk denote the size of the queue at time k = 0; 1; : : :. Assuming
Q0 = 0, we have the following Lindley equation: Qi = hQi�1 + Ai � �i+ = hQi�1 +
Yii+; for i = 1; 2; : : : where we de�ne the process by Y = fYi : Yi = Ai � �; i = 1; : : :g as
the work load process. Let us de�ne �Q = f�Q(i) = Q(i)�Q(i� 1); i = 1; 2; : : :g as the
increment process of the queueing process which is denoted by Q = fQ(i) : i = 1; 2; : : :g,
we have that �Q(i) � T1 if and only if A(i)� � � T1. Therefore monitoring �Q(i) using
DTMW is the same as monitoring A(i) di�ering only by a constant. Thus, our conclusion
in the last section can be applied to the queueing increment process.
When we apply the DTMW to the queueing increment process �Q, we are in fact
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Figure 2. Integration of DTMW with RCBR: (a) structure; (b) 
owchart.

monitoring the increasing rate of bu�er occupancy. When DTMW outputs a value of 1, it
indicates that bu�er occupancy is increasing at a rate larger than T1 per slot. To interpret
this in another way, it means that the server needs at least T1 more bandwidth to keep
the bu�er occupancy constant. This allows us to integrate DTMW smoothly with RCBR
where T1 can be used as the granularity of the RCBR bandwidth reallocation.
Similarly, we can build a detector which can detect the decreasing rate of bu�er occu-

pancy as follows:SN(i) =
PN�1

j=0 I(�Q(i� j) � T1) where T1 must be a negative value. If
SN(i) � T2, we set the detector output to be 1. We will call this detector the Inverse
Double Threshold Moving Window (IDTMW) detector.
While DTMW can monitor increasing rates which are larger than T1, rates smaller than

T1 can still drive the bu�er into over
ow although in a slower fashion. To further control
over
ow, we can set a \high bu�er" boundary. When bu�er occupancy reaches this high
bu�er boundary, we will always request a bandwidth increase by the quantity T1. Simi-
larly, to increase the bandwidth utilization, we need to monitor a \low bu�er" boundary
(which is typically zero), therefore when bu�er occupancy reaches the low boundary we
will request a bandwidth decrease by the quantity T1.
The �nal integrated structure is shown in Fig. 2(a), where HLBC refers to high/low

bu�er occupancy control. The 
ow chart for the whole algorithm is shown in Fig. 2 (b),
where HBC refers to \high bu�er boundary check". When bu�er occupancy is equal or
larger than the high bu�er boundary, then HBC = 1, otherwise HBC = 0. Similarly,
LBC refers to \low bu�er boundary check". When bu�er occupancy is equal or smaller
than the low bu�er boundary, then LBC = 1, otherwise LBC = 0.
While bandwidth decrease requests can always be granted without delay, bandwidth

increase requests always su�er from a round trip delay. We have taken these factors
into account in Fig. 2(b). While the last bandwidth increase request has not been ac-
knowledged, a new bandwidth increase request is not permitted. This prevents excessive
bandwidth increase requests being generated due to the round trip renegotiation delay.
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4. SIMULATION RESULTS

To test our scheme described in the last section, we simulate our algorithm using four
empirical video traces, namely, \Last Action Hero", \Ghost", \Star War", and a segment
from BBC News that was digitized in the Broadband Networks Laboratory at Carleton
University. All empirical traces are collected at the frame level. In the following, a slot is
equal to a frame interval, i.e., approximately 33ms. Bu�er occupancy values are always
normalized by the mean arrival rates of corresponding sources. We consider separately
video segments with intraframe compression (I frames) only and video segments with
interframe compression (I, B, P frames). For segments with I, B, and P frames, only
\Last Action Hero" and \Ghost" traces are available.

4.1. Video with Intraframe Compression Only

As a scenario, in all cases, we will try to control the normalized bu�er occupancy to
a value below 100. Assume the round trip delay for bandwidth increase renegotiations
to be equal to 20 frame intervals (approximately 0.66s) and that bandwidth reallocation
requests are always granted.
First we discuss how to select the control parameters in DTMW. Unlike the AR(1)

heuristic, DTMW results in a bounded response delay which is equal to the window size
N . To control the normalized bu�er occupancy within 100, we need to select the window
size N plus the round trip delay to a value smaller than 100 so that the response will not
be too late. But an excessively small N will reduce the e�ect of smoothing out the SRD
structure. As a compromise, we set N = 15. Because N cannot be set too large, we have
to use T2 to reduce the in
uence of short term 
uctuation. As shown in Proposition 1,
the higher the value T2, the less frequent the renegotiations. So we set T2 = N = 15. For
controlling the bu�er occupancy below 100 and accommodating a round trip delay at 20
frame periods, the high bu�er boundary is set to 80. The parameters of IDTMW are set
exactly the same except that the T1 is negative. The low bu�er boundary is set to zero.
The �rst threshold T1 of DTMW is more di�cult to set. A small T1 will cause the

algorithm to react more frequently therefore introducing more overhead in terms of band-
width renegotiations. A large T1 will make DTMW ine�ective most of the time and leave
the control burden to the high bu�er check which may overreact due to the large T1. In
Fig. 1(b), we plot the frequency of renegotiations versus T1, for the movie \Last Action
Hero". Fig. 1(b) shows that there is a low value around 4000. Notice, however, that,
around T1 = 4000, the frequency of renegotiations is in general not sensitive to the value
of T1 over wide ranges. We will further illustrate this conclusion later by using di�erent
movies. Based on the results in Fig. 1(b), we set T1 = 4000. To simplify the simulations,
the bucket size of the Leaky Bucket in Fig. 2 is set to zero.
Fig. 3 to Fig. 4 depict the results for the movie \Last Action Hero". Fig. 3 (a) shows

the bandwidth increase/decrease requests versus the queueing process. When the bu�er
occupancy increases very fast, DTMW requests a bandwidth increase earlier than the time
that the bu�er occupancy reaches its high boundary. Fig. 3(b) shows the corresponding
arrival and departure processes. It can be clearly seen that the service rate tracks the long
term arrival rate closely. The histogram of the queueing process is shown in Fig. 4(a).
Comparing with Fig. 4(b) which uses CBR service and no control mechanism, the im-
provement is signi�cant. In Fig. 4(a), most of the normalized bu�er occupancy values
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Figure 3. (a) Queueing process and bandwidth increase/decrease requests; (b) Arrival
rate process and service rate process. Utilization=1, RCBR service, DTMW/IDTMW
control.

Table 1
Results for video traces with intraframe compression, using DTMW.

Video name Total frames Mean rate Mean Uti. Max. bu�er Freq.
(bytes/frame) (1/sec)

LAH 238000 6005:2 0:9997 340 0:31
Ghost 217000 9909:0 0:9978 200 0:26

Star War 170000 27791:0 1:000 140 0:54
BBC News 26000 12709:0 0:9993 103 0:26

are within 100, according to our target and the maximum bu�er size without any loss is
only 350, which is in stark contrast to 18000 under static CBR in Fig. 4(b). Because the
probability of the bu�er occupancy larger than 100 now is much smaller than in Fig. 4(b),
for a cell-loss tolerant application, the over
ow tra�c can be dropped.
We applied the same set of control parameters to the other three video traces and list

all the results in Table 1. From Table 1, we can see that, for all video clips, the mean
utilization is very close to 1 and the maximum bu�er occupancy without loss is very close
to our target. This shows that DTMW is robust with respect to di�erent tra�c streams.
To compare the performance of DTMW with the heuristic AR(1) approach, we apply

the AR(1) approach also to the above video traces. As for the simulation of DTMW
approach, we chose the parameters for AR(1) approach based on the video trace of \Last
Action Hero" and applied the same set of parameters to the other video traces in order
to examine the robustness of the AR(1) approach. Similar to the case of DTMW, we
set Bh = 80 and Bl = 0 (see [12] for de�nitions of Bh, Bl and T ) where Bh and Bl

are all normalized by the mean source arrival rate. While the maximum bandwidth
increase range for DTMW is the same as the granularity of bandwidth allocation (i.e.,
the �rst threshold T1), they can be signi�cantly di�erent for the AR(1) approach. Higher
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Figure 4. (a) Histogram of queueing process: Utilization=1, RCBR service,
DTMW/IDTMW control; (b) Histogram of queueing process: Utilization=1, CBR ser-
vice, no control.

Table 2
Results for video traces with intraframe compression, using the heuristic AR(1).

Video name Max bandwidth Mean Uti. Max. bu�er Freq.
increase range (1/sec)

LAH 4000 0:6019 248 0:27
Ghost 4700 0:6386 190 0:36

Star War 11200 0:7743 176 0:51
BBC News 3300 0:6644 140 0:42

bandwidth increase ranges are more likely to be rejected by the network.
To provide a fair comparison, we set the maximum bandwidth increase range of the

AR(1) approach to be the same as for the DTMW by appropriately tuning the value of T .
This results in choosing T = 5000. A comparison of a source arrival sample trace with the
corresponding service rate sample trace is shown in Fig. 5(a) where the slower response
of the heuristic AR(1) approach is clearly shown. Final results are also summarized in
Table 2.

4.2. Video with both Intraframe and Interframe Compression

Video traces with both intraframe and interframe compression typically exhibit a strong
periodic structure associated with their group of picture (GOP) structure. While this may
indicate a non-stationary property, we can still treat it as a stationary process with strong
short term burstiness in most cases where GOP sizes are small. DTMW is designed to
predict 
uctuations in long-range dependent streams, therefore it should also work for
video streams with both intraframe and interframe compression. To test this conclusion,
we apply DTMW to video streams with both intraframe and interframe compression.
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Figure 5. Arrival rate process and service rate process:(a) Utilization=0.6, RCBR service,
heuristic AR(1) control, intraframe compression only. (b) Utilization=1, RCBR service,
DTMW/IDTMW control, T1 = 1000, intraframe and interframe compression.

Table 3
Results for video traces with intraframe and interframe compression, using DTMW.

Video name Total frames Mean rate Mean Uti. Max. bu�er Freq.
(bytes/frame) (1/sec)

LAH 238000 2481 0:9940 495 0:60
Ghost 217000 4077 0:9944 420 0:50

While keeping all other parameters the same as in the last section, we only optimize
again the parameter T1 through a similar search based on the video trace of \Last Action
Hero" as in the last section. The resulting service rate process is shown together with the
source arrival rate process in Fig. 5(b). From Fig. 5(b) we can see that the service rate
process tracks the arrival rate process closely.
For the two available video traces with both intraframe and interframe compression, the

results are listed in Table 3 where the control parameters are the same for both movies.
From Table 3, we can see that all utilization values are very close to 1 and the robustness
of DTMW is satisfactory.

5. CONCLUSIONS

Predicted service provides dynamic bandwidth allocation for tra�c streams with toler-
ant delay and loss requirements. The crucial part of realizing predicted service schemes
is a good predictor that can measure tra�c and predict future bandwidth in real time.
The DTMW scheme proposed here can predict bandwidth requirements of LRD tra�c
through on-line measurement. Analytical and simulation studies employing real video
traces indicate that DTMW is 
exible and robust to di�erent tra�c streams in terms of
the setting of control parameters. The DTMW algorithm does not require declaration of
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detailed tra�c parameters. Finally, DTMW gives close to 100% bandwidth utilization
and bu�er occupancy values that are signi�cantly lower compared to the static CBR case.
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