
Managed Dynamic VPN Service: Core
Capacity Sharing Schemes For Improved

VPN Performance
Ravi S.Ravindran1, Changcheng Huang1, K.Thulasiraman2

 (1.Carleton University, Ottawa, 2.University of Oklahoma, Norman)

Abstract—Managed service framework enables a service
provider to offer more demanding and revenue generating
services. IETF proposed Provider Provisioned IP-VPN service is
a well known managed service. In [6] we first proposed a new
framework to enable managed dynamic VPN service using the
notion of topology abstraction. In [7] we proposed several
distributed heuristics that can be applied in the context of [6].
The focus of this paper is to study the problem of enabling
dynamic managed service using topology abstraction in a
centralized manner whose objective is to maximize the network
utilization and VPN call performance. The centralized scheme
proposed in this paper applies the maximum concurrent flow
theory and proposes two extensions to it. The two extension aims
at improving the conservative nature of using maximum
concurrent flow theory by improving the statistical multiplexing
of available core network resources among the VPNs. We study
the proposed approaches using a simulation environment of an
IP/MPLS network providing managed IP-VPN service with
appropriate extensions required to realize the components of the
Managed Dynamic VPN Service as proposed in [6].

Keywords: IP-VPN Service, Topology Abstraction, Maximum
Concurrent Flow.

I. INTRODUCTION
A Virtual Private Network (VPN) refers to a distributed
network of geographically dispersed network entities
belonging to the same authority virtualized as a private
network by overlaying it over a service provider’s core
network. A common form of VPN service that is well known
is to connect branch offices belonging to an enterprise. In this
form of connectivity there are two basic models of VPN
depending on whether the VPN Service Provider (VSP) takes
part in routing the packets from a VPN site. Based on this
distinction we have Customer Premise Equipment (CPE)
based VPN, in which the VSP is unaware of any VPN
existence. In a CPE based VPN the provider only provides
fixed bit rate pipes or virtual circuits over ATM or
FrameRelay transport technologies between the sites. The
other case is the peer based VPN service, where the VSP is
VPN aware, and hence in addition to providing VPN
connectivity, also participates in VPN routing. The latter case
is of interest here. For insight into various areas of VPN
research related to this paper, refer to works in [1]-[4] and

references therein, which we do not summarize because of
space constraint. In recent years IETF has evolved solutions to
enable provider provisioned IP-VPN service over MPLS based
transport network. A relevant standard proposed to realize
managed IP-VPN service is the BGP/MPLS based solution
proposed in [5].
The motivation for the requirement of dynamic VPN service
proposed in [6] is based on the premise that, future networking
services will have to address the need of bandwidth intensive
applications such as high definition Video broadcast/multicast
from an enterprises and access service providers, or mass
online Interactive gaming that requires significant bandwidths
for short windows of time during a day. The dynamic VPN
service using topology abstraction proposed in [6] tries to
achieve two key objectives. First is to enable dynamic
bandwidth service that would enable the VSP to share
information about the resource availability in the core with the
VPNs using the notion of topology abstraction formerly used
in routing protocols like PNNI for ATM networks for
scalability reasons. Second is to have the proposed framework
to be realized over current managed IP-VPN solutions such as
in [5]. We henceforth refer to the service definition proposed
in [6] as Managed Dynamic VPN Service (MDVS). One of the
challenges of MDVS is to solve the problem of capacity
exposed to the set of VPNs subscribing to MDVS. We called
this problem as the VPN Topology Abstraction (VPN-TA)
problem, and proposed distributed solutions to solve it in [7].
The key contribution of this paper is the use of Maximum-
Concurrent flow (MConF) theory to solve a similar problem
applied in a centralized context. In addition to showing a way
to adapt MConF theory to solve VPN-CS problem, two
improvements to it have also been proposed that aims to
improve the observed conservative nature of applying MConF.

The rest of the paper is organized as follows. Section 2
summarizes briefly MDVS framework and process proposed
in [6]. Section 3 and 4 defines and formulates the VPN Core
Capacity Sharing problem and discusses the heuristic and its
extensions based on maximum concurrent flow theory. Section
5 presents simulation results that discuss the performance of
heuristics suggested in this paper over an IP/MPLS
environment implementing MDVS.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

211

Fig.1.1 shows the graph theory notations used in the paper.

Notation Description
G(V,E) VSP’s core network
VPNabs Set of MDVS VPN Subscribers
PE Set of all PE border nodes
CE Set of all CE border nodes
PEk Set of border nodes hosting VPN k
CEk Set of CE nodes of VPN k
CEk,b Set of CE nodes of VPN k neighboring PE node b
Gabs(k)(x)(Vk, Ek) Abstract topology of type x for VPN k
SLA(k) SLA parameters for VPN k
TTabs(k) Abstract topology type subscribed by VPN k
RIk Abstract topology refresh interval for VPN k
VPNabs(sk ,dk). Set of VPN’s that include src-dest pair (sk, dk)
FM Fully Meshed type abstraction
SR Source Rooted type abstraction
ST Star topology type abstraction
SN Simple node type abstraction

II. MANAGED DYNAMIC VPN SERVICE ARCHITECTURE
In this section we summarize the framework proposed in [6] to
set the context for the remaining discussion. One of the main
building block over which the solution in [5] builds on is the
use of VPN specific Virtual Routing and Forwarding instance
(VRF) tables within PE routers to logically separate the VPN
contexts. To realize MDVS we augment the architecture in [5]
with three additional components: VPN SLA Database,
Abstract Topology Generation Module, and Central Server
(CS). The VPN SLA Database stores the SLA definitions for
all the VPN’s subscribed to the MDVS service. The two
important SLA parameters of a MDVS SLA definition [6] are
the Abstract Topology Type (e.g. Fully Meshed, Source
Rooted Star, Star, Simple Node abstract topology) and the
Abstract Topology Refresh Interval whose use is explained
below. Abstract Topology Generation Module is responsible
for generating abstract graphs applying the Abstract Topology
Type SLA parameter for the VPNs. The abstract graphs are
generated from sub-graphs that are either computed
independently by border nodes as explored in [7], or by a
Central Server as discussed in this paper. The Abstract
Topology Generation Module updates the abstract topologies
to the VPNs periodically applying the Abstract Topology
Refresh Interval SLA parameter. The abstract graphs flooded
to the VPNs are used by the CE nodes to compute an end to
end path traversing the VSP’s core network, and check on the
availability of the desired QoS.

Fig 2.1 shows the steps involved in the topology abstraction
process executed by a PE node b. VPNabs(b) here represents the
set of VPNs hosted on the border node b. The procedure
iterates for each of the VPNs for which abstract topology
needs to be generated. The pseudo code shown in the figure
executes in three stages. As part of the first iteration, Step 1
identifies the subsets of border nodes PEk and CEk for each
VPN k. Step 2 is the critical step where an intermediate sub-
graph SG(Vk, Ek) is determined using the core network from
which the abstract topology is derived. The partition graph in

this case is obtained from the CS. The interaction between the
CS and the border nodes can be implemented such that the
computed partition graph for a given VPN is either
periodically or on-demand given to the border nodes. The
computation of the sub-graph SG(Vk, Ek) is formulated as a
problem in the next section which is solved using MConF flow
theory by the CS. Step 3 uses this computed partitioned graph
SG(Vk,,Ek) to derive a fully meshed abstract topology for the
given VPN k, which we represent as Gabs(k)(FM)(Vk,Ek). The
second phase of iteration includes Step 4 that applies the
fairness criteria. We enforce the fairness criterion by requiring
the VSP to share the available resource fairly among all the
VPN’s, such that for any two VPN x, y ∈VPNabs with similar
type of abstract topology type subscription i.e. TTabs(x) = TTabs(y),
sharing a common border node (b1,b2)∈B, bwabs(x)[b1][b2] =
bwabs(y)[b1][b2]. Step 5 applies the topology type SLA
parameter x=TTabs(k) from possible types (i.e FM, SR, ST, SN)
to the fully meshed abstract graphs Gabs(k)(FM)(Vk,Ek) resulting
in the desired topology abstraction Gabs(k)(x)(Vk,Ek). In Step 6
the PE updates the subset of locally attached CE nodes CEk,b
with this abstract topology. Assuming that the partition graph
SG(Vk, Ek) is available, the complexity of the topology
abstraction process is dominated by the Step 2 in the first
iteration, where any algorithm proposed in [7] can be applied,
which are all polynomial time algorithms. If the algorithm
applied from [7] is the Maximum Capacity Heuristic, the
complexity of the abstraction process is
O(|VPNabs|*|PEK|*|V|2).

III. VPN CAPACITY SHARING PROBLEM (VPN-CS)
The key challenge in MDVS is to decide the core capacity
partition for a VPN from which an abstract topology can be
derived. There are two objectives associated with the core
partition problem. The first objective is to maximize core
network utilization. This also correlates with the goal of
maximizing the revenue generated out of MDVS service. The
second objective is to maximize a VPN’s call performance.

Abstract_Topology(G, b, VPNabs(b))
G: VSP Core Graph
b: Concerned PE node
VPNabs(b): Set of subscribed VPN’s on border node b
Begin:
//Generate Partition Graph and fully meshed abstraction
For each VPN k∈ VPNabs(b)
 Step 1 : Find set PEk ⊂ B and CEk ⊂ C for VPN k
 Step 2 : Obtain graph Partition SG(Vk, Ek) from CM
 Step 3 : Use SG(Vk, Ek) to generate Abstract Graph Gabs(k)(FM)(Vk,Ek)
End For

//Apply fairness criteria to each VPN
For each VPN k∈ VPNabs(b)
 Step 4 : Apply fairness policy to Gabs(k)(FM)(Vk,Ek)
End For

//Apply SLA parameters to generate required abstraction
For each VPN k∈ VPNabs(b)
 Step 5 : Apply x =TTabs(k) to Gabs(k)(FM)(Vk,Ek) to generate Gabs(k)(x)(Vk,Ek)
 Step 6 : Update VPN k node’s CEk,b with Gabs(k)(x)(Vk,Ek)
End For
End

Fig 2.1 Topology Abstraction Process in MDVS

Fig 1.1: Graph Theory Notations

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

212

The parameter of interest in the context of MDVS is VPN Call
Success Ratio. The Call Success Ratio of a VPN is the measure
of making a right bandwidth request decision by a VPN using
the abstraction provided by the VSP. This includes the calls
either being computed correctly or those rejected by the VPN
locally using the abstract representation of the core network. A
CE node rejects a path locally when the local path computation
using the abstract topology fails to find a feasible path. The
partition sub-graph SG(Vk,,Ek) are generated by the CS which
has visibility of the global topology and link state and access to
MDVS service information. We call the problem solved by the
CS to generate these partition graphs for each of the VPNs as
the VPN Capacity Sharing Problem, which can be stated as
follows:

VPN Capacity Sharing Problem (VPN-CS): Given graph
G(V,E) providing MDVS to the set of VPNs (VPNabs), the
objective is to compute virtual partitions SG(Vk, Ek) ∀
k∈VPNabs of the network so as to maximize core network
utilization Uc and VPN call success ratio Pv, ∀ v∈ VPNabs.

The objective Pv, refers to the average VPN Call Success Ratio
for a given VPN v. The two objectives as stated as part of
VPN-CS problem could be positively or negatively correlated
depending on the solution of the VPN-CS problem. The
positive correlation between the two objective functions can be
explained as follows: Improved network utilization can be
achieved by maximizing bandwidth included in the partitioning
process, resulting in efficient bandwidth exposure to a VPN.
This decreases the probability of a VPN terminating calls
wrongly because of negative correlation between the exposed
resources and availability of core network resources, thereby
improving the Call Success Ratio of a VPN. The maximum
network utilization and VPN Call Success Ratio could be
negatively correlated when the heuristic solution is too
pessimistic or too aggressive during the partitioning process.
This could lead to either exposing less capacity than that is
available or lead to over-subscribing the available resources.
Hence solution to the VPN-CS problem has to strike the
balance between the two objectives, which is to improve
network utilization without impacting the VPN’s Call Success
Ratio. We begin our solution by focusing on objective of
maximizing Uc. Considering the relationship between the
maximization objectives of the VPN-CS problem and the total
abstracted capacity, which is the aggregate of the link
capacities of all the partition graphs SG(Vk, Ek), we formulate
the VPN-CS problem with the goal of maximizing the total
abstracted capacity. In the formulation, let Kv represent the set
of all source destination pairs of VPN v. The decision variables
of the formulation are as follows. The variable vk

jix ,
),(denotes

the partition resource assigned to source destination pair (sk,dk)
of v∈VPNabs on an edge (i,j)∈E. Let the net flow achieved for
each source-destination commodity k of VPN v be fk,v. Using
these definitions the VPN-CS problem can be formulated as in
(1)-(5) with the objective of maximizing the aggregate
resources considered as part of the partitioning process. In the
formulation (1)–(3) enforces the supply demand condition for

each commodity k for each VPN v. (4) enforces the capacity
bound for each link of the graph. (5) Enforces the fairness
constraint by forcing the net flow for every pair of commodities
belonging to two different VPNs v1 and v2 having the same
source destination pair to be equal. The worst case scenario of
the formulation can be assessed assuming that all the VPNs are
hosted on all the border nodes. In this case the number of
variables is O(|E|*|VPNabs|*|B|2), and the number of possible
constraints would be in the order O(|VPNabs|2*|B|2).

∑ ∑
∈ ∈abs vVPNv Kk

vkfMAX ,

Subject To:

For an MDVS framework, where the goal is to enable a
dynamic bandwidth request based on topology abstraction in
smaller timescales, the linear programming formulation would
be too complex to solve. Instead we propose algorithms based
on a variant of multi-commodity flow problem which also
enforces fairness, namely the Maximum Concurrent Flow
problem which we modify to achieve the objective stated
above, which also takes advantage of available approximation
heuristics from the literature. The maximum concurrent flow
based approach is discussed next.

3.1 Maximum Concurrent Flow (MConF) Approach

Given a network G(V,E) and set K of source-destination pairs
(si, di), i=1,2, …|K|. Also given the demands D(si, di), i=1,2,
…k, the objective of the MConF Problem is to maximize the
value of ‘Z’ such that there exists a flow that satisfies the
demands Z* D(si, di), ∀ i= 1, 2,…k . The node link formulation
of the MConF problem is as follows. In the formulation (6)-(9)
for a commodity k∈K, k

jix),(would represent the flow on link
(i,j) due to flow between source-destination pair (sk , dk).

Maximum Concurrent Flow problem (MConF)
 Objective: Max Z
 Subject To:

kkk
Eij

k
ij

Eji

k
ji sikdsDZxx =∀−=− ∑∑

∈∈

)),((*
),(

),(
),(

),(
(6)

),(0
),(

),(
),(

),(kk
Eij

k
ij

Eji

k
ji dsikxx ≠∀=− ∑∑

∈∈

EjijiCx
k

k
ji ∈≤∑),(),(),(

kkk
Eij

k
ij

Eji

k
ji dikdsDZxx =∀=− ∑∑

∈∈

)),((*
),(

),(
),(

),(

(7)

(8)

(9)

)(,)2,1(0 21)2,()1,(vvabsvkvk KKkVPNvvff ∩∈∈∀=−

kkvabs
Eij

vk
ij

Eji

vk
ji disiKkVPNvxx ≠≠∈∈∀=− ∑∑

∈∈

,,0
),(

,
),(

),(

,
),(

EjijiCx
absVPNv k

k
ji ∈≤∑ ∑

∈

),(),(),(

kvabsvk
Eij

vk
ij

Eji

vk
ji siKkVPNvfxx =∈∈∀=− ∑∑

∈∈

,,
),(

,
),(

),(

,
),(

kvabsvk
Eij

vk
ij

Eji

vk
ji diKkVPNvfxx =∈∈∀−=− ∑∑

∈∈
,,,

),(

,
),(

),(

,
),(

(1)

(2)

(3)

(4)

(5)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

213

The value of Z is called the throughput of the concurrent flow.
A good analysis of the MConF problem and optimality
conditions has been discussed in references provided in [8]. In
[8] authors propose a Fully Polynomial Time Approximation
Scheme (FPTAS) for the problem. The VPN-CS problem
differs from the MConF problem in a significant way. In the
case of VPN-CS problem the commodity demands D(sk,, dk)
are not known. To solve the VPN-CS problem we initialize
D(sk,,dk) to MaxF(k), where MaxF(k) is the maximum flow for
commodity k. The rationale for choosing the maximum flow
capacity as the source-destination commodity demand is
because of the objective of maximizing the resources
considered during the generation of the partition graphs. In the
context of VPN-CS problem, a source-destination pair (sk,, dk)
could appear in more than one VPN. But as noted in
formulation (1)-(5), modeling the problem for each of the VPN
source-destination demand pair would give rise to a
commodity complexity of O(|VPNabs|2*|B|2). To reduce this
complexity we propose here an aggregated approach. Here we
define a commodity k as source destination pair (sk,dk), where
the commodity flow represents the aggregate flow for all VPNs
which includes source-destination pair (sk,dk), we represent this
set of VPNs as VPNabs(sk ,dk). This reduces the number of
considered commodities to O(|B|2). With respect to the
formulation (6)-(9) k

jix),(, for edge (i,j)∈E, represents the flow
between border nodes sk and dk.. With these considerations we
next propose a centralized heuristic to solve VPN-CS problem
and compute abstractions for the VPN’s.

Fig. 3.1 shows the steps involved in MConF based heuristic
for VPN-CS problem. In Step 1, for each border node pair (sk
,dk), the supply for sk is set to UBmax (k) and demand at dk is set
to -UBmax(k) where UBmax(k) is the value of a maximum
flow from sk to destination dk With these initializations,
Step 2 solves the MConF problem and finds the throughput as
well as the flow assignment for each commodity k on each
link (i,j) ∈ E. Once the allocation for each source-destination

pair is obtained, the task is to share the computed capacity for
each source-destination commodity for each of the related
VPNs. In Step 3, we solve this problem as follows. First we
identify the set of VPNs, VPNabs(sk ,dk), which could have a
potential path request from sk to dk.. We denote the capacity
assigned for VPN v∈VPNabs(sk,,dk) on link (i,j) as vk

jix ,
),(.To

ensure fairness to all VPN commodities we divide computed
partitioned resource k

jix),(equally among all VPN

v∈VPNabs(sk,,dk). We repeat this for each pair (sk,dk). Step 4
uses the capacities logically partitioned for each of the VPNs
to realize the VPN subgraph SG(Vv, Ev) which is distributed to
nodes PEv. The nodes in PEv would be used in Step 3 as
shown in Fig 2.1 to generate fully meshed abstracts graph
Gabs(v)(FM)(Vv,Ev). To generate Gabs(v)(FM)(Vv,Ev) we can apply
one of the heuristics presented in [7], the simplest of which is
to apply the Maximum Capacity Path heuristic with
complexity of O(|V2|). [8] Proposes the cheapest ε-
approximation algorithm for MConF problem with a
complexity of O(ε-2|E|*(|E|+|K|)) which can be applied in
Step 2 of MConF heuristic. With respect to the complexity of
the MConF heuristic which is obviously dominated by Step 2
making the net complexity O(ε-2|E|*(|E|+|K|)).

IV. IMPROVING NETWORK UTILIZATION AND SUCCESS
RATIO FOR MCONF BASED HEURISTIC

The MConF based heuristic proposed for the VPN-CS
problem solves the problem of aggregated source-destination
commodity pairs by virtually partitioning the graph for each
commodity. This approach could be conservative and result in
a situation analogous to dedicated partitioning of resources for
VPNs under known traffic conditions. One of the advantages
of applying MConF heuristic is to minimize the conflict for
resources among VPNs which is expected to be result in
minimal crankback of VPN calls. But conservative nature of
partitioning the available resources could also lead to poor
performance in terms of VPNs’ Call Success Ratio Pv metric
due to high number of calls being rejected locally. This is
because of exact partitioning of resources among VPNs as a
result of applying MConF heuristic. Considering this, we
propose two schemes by which the network utilization and
VPN success ratio can both be improved while at the same
aim to preserve the low call crankback property.

4.1 Over-subscription of Network links
We first pre-determine an over subscription factor fos by which
the residual capacity of all the network links of the core
network would to be oversubscribed. The CS oversubscribes
the link with the pre-determined fos before applying the
MConF heuristic. The factor which affects the performance
with this proposal is the choice of fos. Oversubscribing
technique results in higher residual core capacity available for
sharing among commodities. This increases the exposed
capacity to the VPNs. An observation to be made here is that a
very aggressive oversubscription of link residual capacities
may improve the VPN success ratio, but could also lead to
high number of crankback calls. We suggest choosing the

Multi-Concurrent flow heuristic for VPN-CS Problem
Input: G(V,E), K, VPNabs
Output: SG(Vx, Ex), x ∈ VPNabs

Step 1: For each border node pair (sk,dk), k ∈K, the supply for sk is assigned
to UBmax (k) and demand at dk is assigned to -UBmax(k)

Step 2: Solve the Maximum Single Concurrent Flow Problem.

Step 3: For each pair of border nodes (sk,dk) and identify set VPNabs(sk,,dk),
divide the path flow’s among the VPN’s common to the demand pair, i.e ∀

v∈ VPN(sk,,dk),
vk
jix ,
),(=

k
jix),(/|VPNabs(sk,,dk)|. Here

vk
jix ,
),(is the capacity

assigned to VPN v on link (i,j) for VPN source-destination pair (sk,,,dk) .

Step 4: For all VPN v ∈ VPNabs, create subgraph SG(Vv, Ev), where Vv is the
set of border nodes of VPN v and Ev is the set of all links that have nonzero

vk
jix ,
),(.

Step 5: For each VPN v, distribute SG(Vv, Ev) to PEv.

Fig 3.1, Maximum Concurrent flow Based heuristic for VPN-CS

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

214

subscription factor through simulations such that the VPN
crankback performance is within acceptable threshold.

4.2 MultiPath Flow Abstraction
The enhancement adopted here takes advantage of the fact that
the partitions generated by MConF heuristic are non-
overlapping and hence the VSP could apply an aggressive
abstraction algorithm when abstracting capacity using the
partition graph SG(Vk,,Ek) in Step 3 of the topology abstraction
process shown in Fig 2.1. In the prior discussions we
suggested using Maximum Capacity heuristic, proposed in [7]
to compute capacity to the virtual links. Maximum Capacity
heuristic uses the shortest widest path algorithm which
associates the bottle neck capacity of a single path to the
virtual link. This choice of algorithm may turn out to be very
conservative as capacity more than the maximum single flow
capacity may be available in the core network because of
statistical multiplexing of requests among the VPNs.
Considering this we propose an enhancement to the MConF
based heuristic. In Step 3 of Fig 2.1 where the abstract
topology is generated using SG(Vk,,Ek) we suggest using the
maximum flow (max-flow) capacity algorithm [9] to compute
virtual link capacity between a pair of border nodes for a given
VPN. For a given set of demand requests of a VPN,
abstraction derived from max-flow algorithm is expected to
result in better VPN call performance than the virtual link
capacity derived from the single path abstraction.

V. SIMULATION STUDY
A discrete event simulation was implemented using OpNet, on
a random network topology of 25 nodes with an average node
degree of 4. Five nodes of the core topology were chosen
randomly as the PE nodes. Each of the PE nodes was
configured to handle three different VPN instances. In
addition the centralized server (CS) is also implemented which
generates the VPN partitions for the border PE nodes. The
core network routing and signaling were implemented to
simulate an MPLS control plane. The signaling plane was
implemented to simulate RSVP-TE behavior. The nodes
periodically update their link state routing database by reading
the current state of links during the simulation. Hence, from
the simulations perspective the internal core LSDB associated
with the core nodes (PE and P) is always synchronous with the
link state of the core topology. In order to separate the context
for each VPN, the border nodes are configured to have a VRF
[5] for each VPN its serves. The abstract topology that is
updated by the CS is stored in the VRFs that are periodically
updated to the VPNs. The CS provides the border node a fully
meshed abstraction for each of the VPNs it serves. All the
VPNs for the sake analysis are assumed to subscribe to the
Source Star (SR) abstraction [6]. The dynamic bandwidth call
requests from the VPN client nodes are modeled as Poisson
arrivals, with the capacity requested itself being uniformly
distributed between [1-U], here U is the upper bound of the
uniformly distributed demand. Similarly the call holding times
are exponentially distributed. For the ε-approximation

algorithm proposed in [8], we choose ε of 0.9 for all the cases
considered in our simulations.
We define four performance metrics to measure the VPN’s
call performance and VSP’s MDVS efficiency: VPN Success
Ratio, VPN CrankBack Ratio, VPN MissCall Ratio and
Average Network Utilization. We define the two new
performance metrics VPN CrankBack Ratio and VPN
MissCall Ratio. The VPN CrankBack Ratio is defined as the
fraction of calls that have been cranked back because of a
successful path computation at the VPN’s source end, but
rejected from the neighboring border or intermediate core
node because of insufficient link capacity. The VPN MissCall
Ratio is defined as ratio of calls that have been terminated
locally by the CE node even if there was enough resource to
accommodate the calls, to the total calls originated by the
VPN. A good abstraction scheme would ideally have a miss
call ratio of zero. In all the scenarios considered below the
VPN’s are assumed to be uniformly loading the network, and
the results presented are the average of the performance
behavior for all the three VPNs.

5.1 Performance of MConF Based Heuristic

Fig 5.1 compares the behavior of success and miscall ratio with
varying network load. The load here refers to the ratio of mean
holding times of calls to their mean inter-arrival times. With
increasing load, we notice a decrease in the success ratio metric
performance, while the miscall ratio metric increases. The VPN
crankback ratio was observed to be almost zero in all the cases,
showing the usefulness of applying a MConF heuristic for the
VPN-CS problem. VPN success and misscall ratio are observed
to be inversely related, as decreasing success ratio with no
crankbacks indicates more number of calls being rejected
locally by the VPN even though there is sufficient resource in
the network core to satisfy the requests. The consequence of
decreasing VPN success ratio is detrimental to the VSP since a
conservative capacity exposure implies calls being rejected
locally by the VPNs resulting in the loss of valuable revenue.
This also contributes towards poor network utilization which is
noticed in the graph for lower load conditions which is caused
because of high miss call ratio. We next study the improvement
of the performance metrics by applying the enhancements
proposed in Section 4.1and 4.2.

5.2 Performance of MConF Based Heuristic with
Enhancement

Fig 5.2 compares the VPN success ratio with increasing over-
subscription factor. In this scenario we fix U and VPN load for
all the different cases. From the graph we see that increase in
over-subscription factor improves the VPN performance
statistics. This can be attributed to increasing virtual capacity
being exposed to the VPNs, thereby increasing the number of
calls being processed successfully by the VPN and being
admitted by the VSP. But we also expect crankback ratio to
increase with large oversubscription factors, but this was not
obvious with the simulation set up used to derive results in Fig
5.2. In another set up whose results are shown in Fig 5.3 the
network load was increased by factoring U by 10. Here we

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

215

observed that the crankback ratio became significant for higher
subscription factor. In these conditions we recommend the VSP
to choose an appropriate oversubscription factor so as to bound
the crankback ratio to less than a certain threshold which can
be determined by appropriate simulation setup.

Fig 5.4 shows the VPN performance of applying the
discussion presented in Section 4.2 where we use a multi-path
flow abstraction of virtual capacity solving Maximum Flow
problem during the abstraction process instead of a shortest
widest path algorithm. We observed very good improvement
in the performance applying the max-flow abstraction strategy.
This can be attributed to two reasons: first because applying
max-flow algorithm to abstract available resources from the
partition graph increases the exposed virtual capacity.
Secondly the mechanism also takes advantage of the statistical
multiplexing of demands among the source-destination pairs
of a VPN whose virtual capacities are derived from non-
overlapping partition graphs determined by solving the VPN-
CS problem. Comparing this with oversubscription method,
we observe a consistent performance in terms of VPN success
ratio for varying load conditions. But this may not be true all
the time. With increasing user demand (i.e U) there may be a
point beyond which the max-flow strategy may not improve
the VPN success ratio. Also unlike the over-subscription
enhancement max-flow abstraction method lacks a tunable
parameter which can be used to control the VPN performance,
but this flexibility also lends itself as problem for the VSP to
choose the right oversubscription factor.

VI. CONCLUSIONS
This paper is part of an ongoing investigation of a novel
dynamic managed VPN service first proposed in [6][7]. In this
paper we studied the problem of capacity sharing among
VPNs subscribing to Managed Dynamic VPN Service
(MDVS) in a centralized context. The problem to be solved by
the central server has been defined as the VPN Capacity
Sharing problem. The paper proposes to solve the problem
using Maximum Concurrent Flow (MConF) theory and
propose two extensions to it. The scenario simulating MDVS
and heuristic solutions demonstrates the usefulness of these
solutions.

VII. REFERENCES
[1] Chun Tung Chou, “Traffic Engineering for MPLS-based Virtual Private

Networks”, IEEE, 2002
[2] Debasis Mitra, John A. Morrison, K.G.Ramakrishnan, “Virtual Private

Neworks: Joint Resource Allocation and Routing Design”, IEEE, 1999
[3] N.G.Duffield, P.Goyal, A.Greenberg, P.Mishra, “A flexible model for

resource management in VPN”, in Proc. ACM SIGGCOMM, 1998, pp
95-108

[4] Rebecca Issacs, “ Light Weight Dynamic Programmable VPN”, IEEE-
OPENARCH, 2000.

[5] Eric Rosen et al,“BGP/MPLS IP VPN’s”, IETF, RFC 4364
[6] Ravi Ravindran, ChangCheng Huang, K.Thulasiraman, “Topology

Aggregation as a VPN Service”,IEEE, ICC 2005

[7] Ravi Ravindran, ChangCheng Huang, K.Thulasiraman, “A Dynamic
Managed VPN Service: Architecture and Algorithms”, IEEE, ICC 2006

[8] Lisa K. Fleischer, “Approximating Fractional Multicommodity Flow
Independent of the Number of Commodities”, IEEE, Foundations of
Computer Science,1999

[9] Ravindra K.Ahuja, Thomas L. Magnanti, James B. Orlin, "Network
Fows", Prentice-Hall, 1993

MConF Heuristic Performance
(No Enhancements)

10

30

50

70

90

0.1 0.2 0.4 0.6 0.8 1 5 10

Network Load (Varying Call Holding Time)

V
PN

 P
er

fo
rm

an
ce

(%
)

Success Ratio

Miss Call Ratio

Netw ork Utilization

MConF Heuristic Performace with
Enhancement (Oversubscription)

0
20
40
60
80

100
120

0 20 50 200
Oversubscription (%)

VP
N

 P
er

fo
rm

an
ce

(%

) Success Ratio
MissCall Ratio

MConF Heristic Performance with Enhancement
(Oversubscription)

0

20

40

60

80

100 200 300 500 1000 3000

OverSubscription Ratio (%)

VP
N

P
er

fo
rm

an
ce

 (%
)

Success Ratio
Miss Call Ratio
CrankBack Ratio

MConF. Performance with Enhancements (Multi-
Path Abstraction)

0
20
40
60
80

100
120

0.1 0.2 0.4 0.6 0.8 1

Network Load (Varying Call Holding
Time)

V
PN

 P
er

fo
rm

an
ce

 (%
)

Success
Ratio(MultiPath)
Success Ratio (Single
Path)

Fig. 5.1: Performance with varying Call Holding time

 Fig. 5.2: Performance with varying Oversubscription factor

Fig.5.4: Performance with varying network load

Fig. 5.3: Performance with varying Oversubscription factor

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

216

