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Abstract—Managed service framework enables a service 
provider to offer more demanding and revenue generating 
services.  IETF proposed Provider Provisioned IP-VPN service is 
a well known managed service. In [6] we first proposed a new 
framework to enable managed dynamic VPN service using the 
notion of topology abstraction. In [7] we proposed several 
distributed heuristics that can be applied in the context of [6]. 
The focus of this paper is to study the problem of enabling 
dynamic managed service using topology abstraction in a 
centralized manner whose objective is to maximize the network 
utilization and VPN call performance. The centralized scheme 
proposed in this paper applies the maximum concurrent flow 
theory and proposes two extensions to it. The two extension aims 
at improving the conservative nature of using maximum 
concurrent flow theory by improving the statistical multiplexing 
of available core network resources among the VPNs. We study 
the proposed approaches using a simulation environment of an 
IP/MPLS network providing managed IP-VPN service with 
appropriate extensions required to realize the components of the 
Managed Dynamic VPN Service as proposed in [6].  

Keywords: IP-VPN Service, Topology Abstraction, Maximum 
Concurrent Flow. 

I.  INTRODUCTION  
A Virtual Private Network (VPN) refers to a distributed 
network of geographically dispersed network entities 
belonging to the same authority virtualized as a private 
network by overlaying it over a service provider’s core 
network. A common form of VPN service that is well known 
is to connect branch offices belonging to an enterprise. In this 
form of connectivity there are two basic models of VPN 
depending on whether the VPN Service Provider (VSP) takes 
part in routing the packets from a VPN site. Based on this 
distinction we have Customer Premise Equipment (CPE) 
based VPN, in which the VSP is unaware of any VPN 
existence. In a CPE based VPN the provider only provides 
fixed bit rate pipes or virtual circuits over ATM or 
FrameRelay transport technologies between the sites. The 
other case is the peer based VPN service, where the VSP is 
VPN aware, and hence in addition to providing VPN 
connectivity, also participates in VPN routing. The latter case 
is of interest here.  For insight into various areas of VPN 
research related to this paper, refer to works in [1]-[4] and 

references therein, which we do not summarize because of 
space constraint. In recent years IETF has evolved solutions to 
enable provider provisioned IP-VPN service over MPLS based 
transport network. A relevant standard proposed to realize 
managed IP-VPN service is the BGP/MPLS based solution 
proposed in [5].  
The motivation for the requirement of dynamic VPN service 
proposed in [6] is based on the premise that, future networking 
services will have to address the need of bandwidth intensive 
applications such as high definition Video broadcast/multicast 
from an enterprises and access service providers, or mass 
online Interactive gaming that requires significant bandwidths 
for short windows of time during a day. The dynamic VPN 
service using topology abstraction proposed in [6] tries to 
achieve two key objectives. First is to enable dynamic 
bandwidth service that would enable the VSP to share 
information about the resource availability in the core with the 
VPNs using the notion of topology abstraction formerly used 
in routing protocols like PNNI for ATM networks for 
scalability reasons. Second is to have the proposed framework 
to be realized over current managed IP-VPN solutions such as 
in [5]. We henceforth refer to the service definition proposed 
in [6] as Managed Dynamic VPN Service (MDVS). One of the 
challenges of MDVS is to solve the problem of capacity 
exposed to the set of VPNs subscribing to MDVS. We called 
this problem as the VPN Topology Abstraction (VPN-TA) 
problem, and proposed distributed solutions to solve it in [7]. 
The key contribution of this paper is the use of Maximum-
Concurrent flow (MConF) theory to solve a similar problem 
applied in a centralized context. In addition to showing a way 
to adapt MConF theory to solve VPN-CS problem, two 
improvements to it have also been proposed that aims to 
improve the observed conservative nature of applying MConF.  
 
The rest of the paper is organized as follows. Section 2 
summarizes briefly MDVS framework and process proposed 
in [6]. Section 3 and 4 defines and formulates the VPN Core 
Capacity Sharing problem and discusses the heuristic and its 
extensions based on maximum concurrent flow theory. Section 
5 presents simulation results that discuss the performance of 
heuristics suggested in this paper over an IP/MPLS 
environment implementing MDVS.  
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Fig.1.1 shows the graph theory notations used in the paper. 
 

Notation Description 
G(V,E) VSP’s core network 
VPNabs Set of MDVS VPN Subscribers 
PE Set of all PE border nodes 
CE Set of all CE border nodes 
PEk Set of border nodes hosting VPN k 
CEk Set of CE nodes of VPN k 
CEk,b Set of CE nodes of VPN k neighboring PE node b 
Gabs(k)(x)(Vk, Ek) Abstract topology of type x for VPN k 
SLA(k) SLA parameters for VPN k 
TTabs(k) Abstract topology type subscribed by VPN k 
RIk Abstract topology refresh interval for VPN k 
VPNabs(sk ,dk). Set of VPN’s that include src-dest pair (sk, dk) 
FM Fully Meshed type abstraction 
SR Source Rooted type abstraction 
ST Star topology type abstraction 
SN Simple node type abstraction 

 

II. MANAGED DYNAMIC VPN SERVICE   ARCHITECTURE 
In this section we summarize the framework proposed in [6] to 
set the context for the remaining discussion. One of the main 
building block over which the solution in [5] builds on is the 
use of VPN specific Virtual Routing and Forwarding instance 
(VRF) tables within PE routers to logically separate the VPN 
contexts. To realize MDVS we augment the architecture in [5] 
with three additional components: VPN SLA Database, 
Abstract Topology Generation Module, and Central Server 
(CS).  The VPN SLA Database stores the SLA definitions for 
all the VPN’s subscribed to the MDVS service. The two 
important SLA parameters of a MDVS SLA definition [6] are 
the Abstract Topology Type (e.g. Fully Meshed, Source 
Rooted Star, Star, Simple Node abstract topology) and the 
Abstract Topology Refresh Interval whose use is explained 
below.  Abstract Topology Generation Module is responsible 
for generating abstract graphs applying the Abstract Topology 
Type SLA parameter for the VPNs. The abstract graphs are 
generated from sub-graphs that are either computed 
independently by border nodes as explored in [7], or by a 
Central Server as discussed in this paper. The Abstract 
Topology Generation Module updates the abstract topologies 
to the VPNs periodically applying the Abstract Topology 
Refresh Interval SLA parameter. The abstract graphs flooded 
to the VPNs are used by the CE nodes to compute an end to 
end path traversing the VSP’s core network, and check on the 
availability of the desired QoS.  

Fig 2.1 shows the steps involved in the topology abstraction 
process executed by a PE node b. VPNabs(b) here represents the 
set of VPNs hosted on the border node b. The procedure 
iterates for each of the VPNs for which abstract topology 
needs to be generated. The pseudo code shown in the figure 
executes in three stages. As part of the first iteration, Step 1 
identifies the subsets of border nodes PEk and CEk for each 
VPN k. Step 2 is the critical step where an intermediate sub-
graph SG(Vk, Ek) is determined using the core network from 
which the abstract topology is derived. The partition graph in 

this case is obtained from the CS. The interaction between the 
CS and the border nodes can be implemented such that the 
computed partition graph for a given VPN is either 
periodically or on-demand given to the border nodes. The 
computation of the sub-graph SG(Vk, Ek) is formulated as a 
problem in the next section which is solved using MConF flow 
theory by the CS. Step 3 uses this computed partitioned graph 
SG(Vk,,Ek) to derive a fully meshed abstract topology for the 
given VPN k, which we represent as Gabs(k)(FM)(Vk,Ek). The 
second phase of iteration includes Step 4 that applies the 
fairness criteria. We enforce the fairness criterion by requiring 
the VSP to share the available resource fairly among all the 
VPN’s, such that for any two VPN x, y ∈VPNabs with similar 
type of abstract topology type subscription i.e. TTabs(x) = TTabs(y), 
sharing a common border node (b1,b2)∈B, bwabs(x)[b1][b2] = 
bwabs(y)[b1][b2]. Step 5 applies the topology type SLA 
parameter x=TTabs(k) from possible types (i.e FM, SR, ST, SN) 
to the fully meshed abstract graphs Gabs(k)(FM)(Vk,Ek) resulting 
in the desired topology abstraction Gabs(k)(x)(Vk,Ek). In Step 6 
the PE updates the subset of locally attached CE nodes CEk,b 
with this abstract topology. Assuming that the partition graph 
SG(Vk, Ek) is available, the complexity of the topology 
abstraction process is dominated by the Step 2 in the first 
iteration, where any algorithm proposed in [7] can be applied, 
which are all polynomial time algorithms. If the algorithm 
applied from [7] is the Maximum Capacity Heuristic, the 
complexity of the abstraction process is 
O(|VPNabs|*|PEK|*|V|2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. VPN CAPACITY SHARING PROBLEM (VPN-CS) 
The key challenge in MDVS is to decide the core capacity 
partition for a VPN from which an abstract topology can be 
derived. There are two objectives associated with the core 
partition problem. The first objective is to maximize core 
network utilization. This also correlates with the goal of 
maximizing the revenue generated out of MDVS service. The 
second objective is to maximize a VPN’s call performance. 

Abstract_Topology(G, b, VPNabs(b) ) 
G: VSP Core Graph 
b: Concerned PE node  
VPNabs(b): Set of subscribed VPN’s on border node b 
Begin: 
//Generate Partition Graph and fully meshed abstraction 
For each VPN  k∈ VPNabs(b)  
   Step  1 : Find set PEk  ⊂ B and CEk ⊂ C for VPN k  
   Step  2 : Obtain graph Partition SG(Vk, Ek) from CM 
   Step  3 : Use SG(Vk, Ek) to generate Abstract Graph Gabs(k)(FM)(Vk,Ek) 
End For 
 
//Apply fairness criteria to each VPN 
For each VPN  k∈ VPNabs(b)  
    Step 4 : Apply fairness policy to Gabs(k)(FM)(Vk,Ek) 
End For 
 
//Apply SLA parameters to generate required abstraction 
For each VPN  k∈ VPNabs(b)  
    Step 5 : Apply x =TTabs(k) to Gabs(k)(FM)(Vk,Ek) to generate Gabs(k)(x)(Vk,Ek) 
    Step 6 : Update VPN k  node’s CEk,b with Gabs(k)(x)(Vk,Ek) 
End For 
End

Fig 2.1 Topology Abstraction Process in MDVS 

Fig 1.1: Graph Theory Notations 
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The parameter of interest in the context of MDVS is VPN Call 
Success Ratio. The Call Success Ratio of a VPN is the measure 
of making a right bandwidth request decision by a VPN using 
the abstraction provided by the VSP. This includes the calls 
either being computed correctly or those rejected by the VPN 
locally using the abstract representation of the core network. A 
CE node rejects a path locally when the local path computation 
using the abstract topology fails to find a feasible path. The 
partition sub-graph SG(Vk,,Ek) are generated by the CS which 
has visibility of the global topology and link state and access to 
MDVS service information. We call the problem solved by the 
CS to generate these partition graphs for each of the VPNs as 
the VPN Capacity Sharing Problem, which can be stated as 
follows: 

VPN Capacity Sharing Problem (VPN-CS): Given graph 
G(V,E) providing MDVS to the set of VPNs (VPNabs), the 
objective is to compute virtual partitions SG(Vk, Ek) ∀ 
k∈VPNabs of the network so as to maximize core network 
utilization Uc  and VPN call success ratio Pv, ∀ v∈ VPNabs.  

The objective Pv, refers to the average VPN Call Success Ratio 
for a given VPN v. The two objectives as stated as part of 
VPN-CS problem could be positively or negatively correlated 
depending on the solution of the VPN-CS problem. The 
positive correlation between the two objective functions can be 
explained as follows: Improved network utilization can be 
achieved by maximizing bandwidth included in the partitioning 
process, resulting in efficient bandwidth exposure to a VPN. 
This decreases the probability of a VPN terminating calls 
wrongly because of negative correlation between the exposed 
resources and availability of core network resources, thereby 
improving the Call Success Ratio of a VPN. The maximum 
network utilization and VPN Call Success Ratio could be 
negatively correlated when the heuristic solution is too 
pessimistic or too aggressive during the partitioning process. 
This could lead to either exposing less capacity than that is 
available or lead to over-subscribing the available resources. 
Hence solution to the VPN-CS problem has to strike the 
balance between the two objectives, which is to improve 
network utilization without impacting the VPN’s Call Success 
Ratio. We begin our solution by focusing on objective of 
maximizing Uc. Considering the relationship between the 
maximization objectives of the VPN-CS problem and the total 
abstracted capacity, which is the aggregate of the link 
capacities of all the partition graphs SG(Vk, Ek), we formulate 
the VPN-CS problem with the goal of maximizing the total 
abstracted capacity. In the formulation, let Kv represent the set 
of all source destination pairs of VPN v. The decision variables 
of the formulation are as follows. The variable vk

jix ,
),(  denotes 

the partition  resource assigned to source destination pair (sk,dk) 
of  v∈VPNabs  on an edge (i,j)∈E. Let the net flow achieved for 
each source-destination commodity k of VPN v be fk,v. Using 
these definitions the VPN-CS problem can be formulated as in 
(1)-(5) with the objective of maximizing the aggregate 
resources considered as part of the partitioning process. In the 
formulation (1)–(3) enforces the supply demand condition for 

each commodity k for each VPN v. (4) enforces the capacity 
bound for each link of the graph. (5) Enforces the fairness 
constraint by forcing the net flow for every pair of commodities 
belonging to two different VPNs v1 and v2 having the same 
source destination pair to be equal. The worst case scenario of 
the formulation can be assessed assuming that all the VPNs are 
hosted on all the border nodes. In this case the number of 
variables is O(|E|*|VPNabs|*|B|2), and the number of possible 
constraints would be in the order O(|VPNabs|2*|B|2 ).   

∑ ∑
∈ ∈abs vVPNv Kk

vkfMAX ,
 

Subject To: 

 

 

         

 

 

        

 

 

For an MDVS framework, where the goal is to enable a 
dynamic bandwidth request based on topology abstraction in 
smaller timescales, the linear programming formulation would 
be too complex to solve. Instead we propose algorithms based 
on a variant of multi-commodity flow problem which also 
enforces fairness, namely the Maximum Concurrent Flow 
problem which we modify to achieve the objective stated 
above, which also takes advantage of available approximation 
heuristics from the literature. The maximum concurrent flow 
based approach is discussed next. 

3.1 Maximum Concurrent Flow (MConF) Approach 

Given a network G(V,E)  and  set K  of source-destination pairs 
(si, di), i=1,2, …|K|. Also given the demands D(si, di), i=1,2, 
…k, the objective of the MConF Problem is to maximize the 
value of ‘Z’ such that there exists a flow that satisfies the 
demands Z* D(si, di), ∀ i= 1, 2,…k . The node link formulation 
of the MConF problem is as follows. In the formulation (6)-(9) 
for a commodity k∈K, k

jix ),(  would represent the flow on link 
(i,j) due to flow between source-destination pair (sk , dk).  

Maximum Concurrent Flow problem (MConF) 
  Objective:  Max Z 
    Subject To: 
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The value of Z is called the throughput of the concurrent flow. 
A good analysis of the MConF problem and optimality 
conditions has been discussed in references provided in [8]. In 
[8] authors propose a Fully Polynomial Time Approximation 
Scheme (FPTAS) for the problem. The VPN-CS problem 
differs from the MConF problem in a significant way. In the  
case of VPN-CS problem the commodity demands D(sk,, dk) 
are not known. To solve the VPN-CS problem we initialize 
D(sk,,dk) to MaxF(k), where MaxF(k) is the maximum flow for 
commodity k. The rationale for choosing the maximum flow 
capacity as the source-destination commodity demand is 
because of the objective of maximizing the resources 
considered during the generation of the partition graphs. In the 
context of VPN-CS problem, a source-destination pair (sk,, dk) 
could appear in more than one VPN. But as noted in 
formulation (1)-(5), modeling the problem for each of the VPN 
source-destination demand pair would give rise to  a 
commodity complexity of O(|VPNabs|2*|B|2). To reduce this 
complexity we propose here an aggregated approach. Here we 
define a commodity k as source destination pair (sk,dk), where 
the commodity flow represents the aggregate flow for all VPNs 
which includes source-destination pair (sk,dk), we represent this 
set of VPNs as VPNabs(sk ,dk). This reduces the number of 
considered commodities to O(|B|2). With respect to the 
formulation (6)-(9) k

jix ),( , for edge (i,j)∈E, represents the flow 
between border nodes sk and dk.. With these considerations we 
next propose a centralized heuristic to solve VPN-CS problem 
and compute abstractions for the VPN’s.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1 shows the steps involved in MConF based heuristic 
for VPN-CS problem. In Step 1, for each border node pair (sk 
,dk), the supply for sk is set to UBmax (k) and demand at dk is set 
to     -UBmax(k) where UBmax(k) is the  value of  a maximum 
flow from  sk  to destination dk   With these initializations,    
Step 2 solves the MConF problem  and finds the throughput as 
well as the flow assignment for each commodity k on each 
link  (i,j) ∈ E.  Once the allocation for each source-destination 

pair is obtained, the task is to share the computed capacity for 
each source-destination commodity for each of the related 
VPNs. In Step 3, we solve this problem as follows. First we 
identify the set of VPNs, VPNabs(sk ,dk), which could have a 
potential path request from sk to dk.. We denote the capacity 
assigned for VPN v∈VPNabs(sk,,dk) on link (i,j) as vk

jix ,
),( .To 

ensure fairness to all VPN commodities we divide computed 
partitioned resource k

jix ),( equally among all VPN 

v∈VPNabs(sk,,dk). We repeat this for each pair (sk,dk). Step 4 
uses the capacities logically partitioned for each of the VPNs 
to realize the VPN subgraph SG(Vv, Ev)  which is distributed to 
nodes PEv. The nodes in PEv would be used in Step 3 as 
shown in Fig 2.1 to generate fully meshed abstracts graph 
Gabs(v)(FM)(Vv,Ev). To generate Gabs(v)(FM)(Vv,Ev) we can apply 
one of the heuristics presented in [7], the simplest of which is 
to apply the Maximum Capacity Path heuristic with 
complexity of O(|V2|). [8] Proposes the cheapest ε-
approximation algorithm for MConF problem with a 
complexity of   O(ε-2|E|*(|E|+|K|)) which can be applied in 
Step 2 of MConF heuristic. With respect to the complexity of 
the MConF heuristic which is obviously dominated by Step 2 
making the net complexity O(ε-2|E|*(|E|+|K| )). 

IV. IMPROVING NETWORK UTILIZATION AND SUCCESS 
RATIO FOR MCONF BASED HEURISTIC 

The MConF based heuristic proposed for the VPN-CS 
problem solves the problem of aggregated source-destination 
commodity pairs by virtually partitioning the graph for each 
commodity. This approach could be conservative and result in 
a situation analogous to dedicated partitioning of resources for 
VPNs under known traffic conditions. One of the advantages 
of applying MConF heuristic is to minimize the conflict for 
resources among VPNs which is expected to be result in 
minimal crankback of VPN calls. But conservative nature of 
partitioning the available resources could also lead to poor 
performance in terms of VPNs’ Call Success Ratio Pv metric 
due to high number of calls being rejected locally. This is 
because of exact partitioning of resources among VPNs as a 
result of applying MConF heuristic. Considering this, we 
propose two schemes by which the network utilization and 
VPN success ratio can both be improved while at the same 
aim to preserve the low call crankback  property. 
 
4.1 Over-subscription of Network links 
We first pre-determine an over subscription factor fos by which 
the residual capacity of all the network links of the core 
network would to be oversubscribed. The CS oversubscribes 
the link with the pre-determined fos before applying the 
MConF heuristic. The factor which affects the performance 
with this proposal is the choice of fos. Oversubscribing 
technique results in higher residual core capacity available for 
sharing among commodities. This increases the exposed 
capacity to the VPNs. An observation to be made here is that a 
very aggressive oversubscription of link residual capacities 
may improve the VPN success ratio, but could also lead to 
high number of crankback calls. We suggest choosing the 

Multi-Concurrent flow heuristic for VPN-CS Problem 
Input: G(V,E), K, VPNabs   
Output: SG(Vx, Ex), x ∈ VPNabs 
 
Step 1: For each border node pair (sk,dk), k ∈K,  the supply for sk is assigned 
to UBmax (k) and demand at dk is assigned to -UBmax(k)  
 
Step 2: Solve the Maximum Single Concurrent Flow Problem.  

Step 3: For each pair of border nodes (sk,dk) and identify set VPNabs(sk,,dk), 
divide the path flow’s among the VPN’s common to the demand pair, i.e ∀ 

v∈ VPN(sk,,dk), 
vk
jix ,
),(  = 

k
jix ),( /|VPNabs(sk,,dk)|. Here 

vk
jix ,
),( is the capacity 

assigned to VPN v on link (i,j) for VPN source-destination pair  (sk,,,dk ) . 
 
Step 4: For all VPN v ∈ VPNabs, create subgraph SG(Vv, Ev), where Vv is the 
set of border nodes of VPN v and Ev is the set of all links that have nonzero 

vk
jix ,
),( . 

Step 5:  For each VPN v,  distribute SG(Vv, Ev) to PEv. 

Fig 3.1, Maximum Concurrent flow Based heuristic for VPN-CS 
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subscription factor through simulations such that the VPN 
crankback performance is within acceptable threshold. 
 
4.2 MultiPath Flow Abstraction 
The enhancement adopted here takes advantage of the fact that 
the partitions generated by MConF heuristic are non-
overlapping and hence the VSP could apply an aggressive 
abstraction algorithm when abstracting capacity using the 
partition graph SG(Vk,,Ek) in Step 3 of the topology abstraction 
process shown in Fig 2.1. In the prior discussions we 
suggested using Maximum Capacity heuristic, proposed in [7] 
to compute capacity to the virtual links. Maximum Capacity 
heuristic uses the shortest widest path algorithm which 
associates the bottle neck capacity of a single path to the 
virtual link. This choice of algorithm may turn out to be very 
conservative as capacity more than the maximum single flow 
capacity may be available in the core network because of 
statistical multiplexing of requests among the VPNs. 
Considering this we propose an enhancement to the MConF 
based heuristic. In Step 3 of Fig 2.1 where the abstract 
topology is generated using SG(Vk,,Ek) we suggest using the  
maximum flow (max-flow) capacity algorithm [9] to compute 
virtual link capacity between a pair of border nodes for a given 
VPN. For a given set of demand requests of a VPN, 
abstraction derived from max-flow algorithm is expected to 
result in better VPN call performance than the virtual link 
capacity derived from the single path abstraction. 

V. SIMULATION STUDY 
A discrete event simulation was implemented using OpNet, on 
a random network topology of 25 nodes with an average node 
degree of 4.  Five nodes of the core topology were chosen 
randomly as the PE nodes. Each of the PE nodes was 
configured to handle three different VPN instances. In 
addition the centralized server (CS) is also implemented which 
generates the VPN partitions for the border PE nodes. The 
core network routing and signaling were implemented to 
simulate an MPLS control plane. The signaling plane was 
implemented to simulate RSVP-TE behavior. The nodes 
periodically update their link state routing database by reading 
the current state of links during the simulation. Hence, from 
the simulations perspective the internal core LSDB associated 
with the core nodes (PE and P) is always synchronous with the 
link state of the core topology. In order to separate the context 
for each VPN, the border nodes are configured to have a VRF 
[5] for each VPN its serves. The abstract topology that is 
updated by the CS is stored in the VRFs that are periodically 
updated to the VPNs. The CS provides the border node a fully 
meshed abstraction for each of the VPNs it serves. All the 
VPNs for the sake analysis are assumed to subscribe to the 
Source Star (SR) abstraction [6]. The dynamic bandwidth call 
requests from the VPN client nodes are modeled as Poisson 
arrivals, with the capacity requested itself being uniformly 
distributed between [1-U], here U is the upper bound of the 
uniformly distributed demand. Similarly the call holding times 
are exponentially distributed. For the ε-approximation 

algorithm proposed in [8], we choose ε of 0.9 for all the cases 
considered in our simulations.  
We define four performance metrics to measure the VPN’s 
call performance and VSP’s MDVS efficiency: VPN Success 
Ratio, VPN CrankBack Ratio, VPN MissCall Ratio and 
Average Network Utilization. We define the two new 
performance metrics VPN CrankBack Ratio and VPN 
MissCall Ratio. The VPN CrankBack Ratio is defined as the 
fraction of calls that have been cranked back because of a 
successful path computation at the VPN’s source end, but 
rejected from the neighboring border or intermediate core 
node because of insufficient link capacity. The VPN MissCall 
Ratio is defined as ratio of calls that have been terminated 
locally by the CE node even if there was enough resource to 
accommodate the calls, to the total calls originated by the 
VPN. A good abstraction scheme would ideally have a miss 
call ratio of zero. In all the scenarios considered below the 
VPN’s are assumed to be uniformly loading the network, and 
the results presented are the average of the performance 
behavior for all the three VPNs.  
 
5.1 Performance of MConF Based Heuristic  

Fig 5.1 compares the behavior of success and miscall ratio with 
varying network load. The load here refers to the ratio of mean 
holding times of calls to their mean inter-arrival times.  With 
increasing load, we notice a decrease in the success ratio metric 
performance, while the miscall ratio metric increases. The VPN 
crankback ratio was observed to be almost zero in all the cases, 
showing the usefulness of applying a MConF heuristic for the 
VPN-CS problem. VPN success and misscall ratio are observed 
to be inversely related, as decreasing success ratio with no 
crankbacks indicates more number of calls being rejected 
locally by the VPN even though there is sufficient resource in 
the network core to satisfy the requests. The consequence of 
decreasing VPN success ratio is detrimental to the VSP since a 
conservative capacity exposure implies calls being rejected 
locally by the VPNs resulting in the loss of valuable revenue. 
This also contributes towards poor network utilization which is 
noticed in the graph for lower load conditions which is caused 
because of high miss call ratio. We next study the improvement 
of the performance metrics by applying the enhancements 
proposed in Section 4.1and 4.2. 

5.2 Performance of MConF Based Heuristic with 
Enhancement 

Fig 5.2 compares the VPN success ratio with increasing over-
subscription factor. In this scenario we fix U and VPN load for 
all the different cases.  From the graph we see that increase in 
over-subscription factor improves the VPN performance 
statistics. This can be attributed to increasing virtual capacity 
being exposed to the VPNs, thereby increasing the number of 
calls being processed successfully by the VPN and being 
admitted by the VSP. But we also expect crankback ratio to 
increase with large oversubscription factors, but this was not 
obvious with the simulation set up used to derive results in Fig 
5.2. In another set up whose results are shown in Fig 5.3 the 
network load was increased by factoring U by 10. Here we 
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observed that the crankback ratio became significant for higher 
subscription factor. In these conditions we recommend the VSP 
to choose an appropriate oversubscription factor so as to bound 
the crankback ratio to less than a certain threshold which can 
be determined by appropriate simulation setup.  

Fig 5.4 shows the VPN performance of applying the 
discussion presented in Section 4.2 where we use a multi-path 
flow abstraction of virtual capacity solving Maximum Flow 
problem during the abstraction process instead of a shortest 
widest path algorithm. We observed very good improvement 
in the performance applying the max-flow abstraction strategy. 
This can be attributed to two reasons: first because applying 
max-flow algorithm to abstract available resources from the 
partition graph increases the exposed virtual capacity. 
Secondly the mechanism also takes advantage of the statistical 
multiplexing of demands among the source-destination pairs 
of a VPN whose virtual capacities are derived from non-
overlapping partition graphs determined by solving the VPN-
CS problem. Comparing this with oversubscription method, 
we observe a consistent performance in terms of VPN success 
ratio for varying load conditions. But this may not be true all 
the time. With increasing user demand (i.e U) there may be a 
point beyond which the max-flow strategy may not improve 
the VPN success ratio. Also unlike the over-subscription 
enhancement max-flow abstraction method lacks a tunable 
parameter which can be used to control the VPN performance, 
but this flexibility also lends itself as problem for the VSP to 
choose the right oversubscription factor. 

VI. CONCLUSIONS 
This paper is part of an ongoing investigation of a novel 
dynamic managed VPN service first proposed in [6][7]. In this 
paper we studied the problem of capacity sharing among 
VPNs subscribing to Managed Dynamic VPN Service 
(MDVS) in a centralized context. The problem to be solved by 
the central server has been defined as the VPN Capacity 
Sharing problem. The paper proposes to solve the problem 
using Maximum Concurrent Flow (MConF) theory and 
propose two extensions to it. The scenario simulating MDVS 
and heuristic solutions demonstrates the usefulness of these 
solutions.  
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Fig. 5.1: Performance with varying Call Holding time 

         Fig. 5.2: Performance with varying Oversubscription factor 

Fig.5.4: Performance with varying network load  

Fig. 5.3: Performance with varying Oversubscription factor 
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