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ABSTRACT
Self-similar stochastic processes have been proposed as more accurate mod-

els of certain categories of tra�c (e.g., Ethernet tra�c, variable-bit-rate video).
Analytical and simulation approaches applicable to traditional tra�c models
may not be applicable to these categories of tra�c due to their long range
dependence.

Existing analytical results for the tail distribution of the waiting time in
a single server queue based on Fractional Gaussian Noise and large deviation
theory, are valid under a steady-state regime and for asymptotically large
bu�er sizes. Predicted performance based on steady-state regimes may be
overly pessimistic for practical applications. Analytical approaches to obtain
transient queueing behavior and queueing distributions for small bu�er sizes
become quickly intractable.

In this paper, we develop a fast simulation approach based on importance
sampling that we use to simulate the queueing behavior of self-similar processes
in a multiplexer, including the estimation of very low cell-loss probabilities.
We describe both a simpler heuristic approach as well as a simulation approach
inspired by asymptotically e�cient simulation of general Gaussian processes.
Our simulation experiments provide insight on transient behavior that is not
possible to predict using current analytical results. Finally, our simulations
show good agreement with existing results when approaching steady-state.

1 Introduction

Extensive measurements of real tra�c data, mainly at Bellcore [1], have led

to the conclusion that Ethernet tra�c cannot be su�ciently represented by

traditional models, but instead possesses long-range dependent (LRD) char-

acteristics that can be more accurately matched by self-similar models [2, 3].



More recently, variable-bit-rate (VBR) video tra�c was also found to exhibit

LRD characteristics, similarly to LAN tra�c [4].

Both Ethernet and VBR video tra�c streams exhibit long range depen-

dence, that is, their autocorrelation function is non-summable and decays less

than exponentially fast. This is in contrast to traditional stochastic mod-

els, all of which exhibit short range dependence (SRD), i.e., have a summable

autocorrelation function. The serious implication for network design is that,

conclusions based on traditional models may not be applicable to these tra�c

sources.

There have been only a few analytical queueing results reported in this

area. In [5, 6] asymptotic expressions for the steady-state waiting time in

single-server queues were derived by generalizing large deviation theorems to

include LRD and self-similar processes. Analytical work related to this subject

can also be found in [7].

Results in [5, 6] deal with the steady-state asymptotics for a single-server

queue under Fractional Gaussian Noise (FGN) [2]. While strict self-similarity

captures the burstiness of tra�c at all time scales, realistic networks are ex-

pected to carry tra�c that although long-range dependent, will still have a

limiting time scale. Therefore, predicted performance based on a steady-state

regimemay be overly pessimistic for practical applications. Furthermore, ques-

tions regarding the transient behavior, small bu�er sizes, multiplexing e�ects,

and, in general, the performance of networks under LRD tra�c, remain unan-

swered. For this purpose, analytical approaches become quickly intractable.

Given the di�culties in analysis, simulation can play an important role in

the study of network performance under long-range dependent tra�c modeled

by self-similar processes. While several approaches have been proposed for the

synthetic generation of self-similar tra�c traces (e.g., Hosking's method [8],

Mandelbrot's fast fractional Gaussian noise approach [9, 10], aggregation of

a large number of heavy-tail sources [11], nonlinear chaotic maps [12, 13, 14],

random midpoint displacement [15]), they are, in general, either approximate

or exact but e�cient for generating small numbers of relative long traces.

Due to the long-range dependence, accurate statistics can be obtained only

from a large number of replications. This is especially true in broadband

multimedia networks where one may want to simulate events that are rare,



e.g., cell losses with probability < 10�9. For this task, conventional simulation

techniques can be extremely ine�cient.

In this paper we present a fast simulation approach based on importance

sampling (IS) and Hosking's method in [8]. Using this approach we simulate

the transient queueing behavior of certain self-similar arrival processes, namely

discrete-time FGN. Although Hosking's method is not the most e�cient gen-

eration method, it is, however, exact, and by combining it with IS we illustrate

how it can be made applicable to practical simulation studies.

Our transient results are consistent with the steady-state results in [5].

Furthermore, we verify experimentally the existence of a certain time scale at

which the transient result is a good approximation for steady-state. Finally, we

apply importance sampling to the simulation of the multiplexing e�ect under

both homogeneous and heterogeneous tra�c sources. For the case of multi-

plexing heterogeneous sources, we prove a Proposition stating that the tra�c

source with the higher Hurst parameter, H, will dominate the tail behavior of

the queueing distribution (which we also verify by simulation).

We focus on the following key issues in network design: the bu�ering gain,

i.e., the reduction in cell loss probability as the bu�er size increases, and the

multiplexing gain, i.e., the reduction in cell loss due to statistical smoothing

when multiple bursty sources are aggregated. If we de�ne the burstiness of

long-range dependent tra�c as the Hurst parameter [16], our results indicate

that, the higher the burstiness, the lower the bu�ering gain, as predicted by

large deviation results. Our results also agree with the predictions that, com-

pared with SRD models, LRD models show smaller bu�ering gains. On the

other hand, our results indicate signi�cant gains from statistical multiplex-

ing. These multiplexing gains appear to increase with the burstiness (Hurst

parameter) of the LRD tra�c.

In addition to these results, we show that when two heterogeneous LRD

sources are statistically multiplexed, the steady-state behavior of a system

with large bu�er size will be dominated by the burstier process, as predicted

by large deviation theory. Therefore, when a process possesses both long

and short-range dependent components, e.g., the fractional autoregressive in-

tegrated moving-average (F-ARIMA) [17, 18] model, the steady-state behavior

will only re
ect the contribution of the long-range dependent component. This

again emphasizes the need for transient in addition to steady-state analysis.



This paper is organized as follows: In Section 2 we present a brief intro-

duction to self-similar tra�c models and the existing large deviations results.

In Section 3 we describe the self-similar tra�c model we use, namely discrete-

time FGN, and Hosking's method for generating LRD tra�c traces from it.

In Section 4 we develop an importance sampling technique for simulating self-

similar processes. In Section 5 we present simulation results and we generalize

results in [5] to include multiplexing e�ects (required in order to compare with

our simulation study). Finally, in Section 6 we present our conclusions.

2 Self-Similar Tra�c Models

2.1 De�nition of Self-Similarity

Let X = fXk : k = 1; 2; : : :g be a covariance stationary stochastic process, that

is, a process with constant meanm = E[Xk], �nite variance �2 = E[(Xk�m)2],

and an autocorrelation function as follows:

r(k) =
E[(Xi �m)(Xi+k �m)]

�2
� k��L(k)

as k !1, i = : : : ;�1; 0; 1; : : :, where 0 < � < 1, and L(k) is slowly varying

at in�nity, i.e., limx!1 L(tx)=L(x) = 1, for every t > 0 [1]. For each n =

1; 2; 3; : : :, let

X
(n)
k = (Xkn +Xkn�1 + � � �+Xkn�(n�1))=n; k = 1; 2; 3; : : :

then the time series X(n) = fX(n)
k : k = 1; 2; 3; : : :g is also a covariance station-

ary process. Let r(n)(k), k = 1; 2; : : :, denote the corresponding autocorrelation

function. If

r(n)(k) = r(k); for all n = 1; 2; 3; : : : and k = 1; 2; 3; : : : (1)

then the process X is called exactly second-order self-similar with Hurst pa-

rameter H = 1 � �=2. The process X is called asymptotically second-order

self-similar with Hurst parameter H = 1� �=2, if

r(n)(1) ! 21�� � 1; as n!1; (2)

r(n)(k) ! �2(k2��)=2; as n!1 (k = 2; 3; : : :); (3)



where �2(f(k)) = f(k + 1)� 2f(k) + f(k � 1).

De�nitions of self-similar processes in a more general sense can be found

in [2]. A crucial feature of such processes is that their aggregated processes

X(n) possess a nondegenerate correlation structure as n!1. Mathematically,

it was shown in [19] that the autocorrelations of general self-similar processes

decay hyperbolically rather than exponentially fast, implying a nonsummable

autocorrelation function (i.e., long range dependence).

An important recent development in tra�c modeling is that Leland et al.

[1] have found that Ethernet tra�c satis�es (1), while Beran et al. [4] have

shown that VBR video tra�c satis�es (2) { (3).

2.2 De�nition of the FGN Process

While there are numerous stochastic models which exhibit the self-similar

property, two of them, namely the exactly self-similar fractional Gaussian

noise (FGN) [2] and the asymptotically self-similar fractional autoregressive

integrated moving-average (F-ARIMA) process [17, 18], are the most com-

monly used. FGN can be viewed as a reasonable �rst approximation of more

complex LRD processes, since it can be derived from a special type of central

limit theorem applied to LRD processes, as shown in [9]. While we consider

only FGNmodels in this paper, our approach can be easily extended to include

F-ARIMA models.

A fractional Gaussian noise process X = fXk : k = 1; 2; : : :g is a stationary

Gaussian process with mean m = E[Xk], variance �2 = E[(Xk � m)2], and

autocorrelation function

r(k) = 1=2(jk + 1j2H � 2jkj2H + jk � 1j2H); k = : : : ;�1; 0; 1; : : : (4)

Therefore, if 1=2 < H < 1, FGN is exactly second-order self-similar with Hurst

parameter H. Now de�ne process Z = fZk : k = 0; 1; 2; : : :g as

Zk =
kX
i=1

Xi; for k = 1; 2; : : :

Then Z is a stationary increment process with mean �(k) = km, and variance


(k) = �2k2H (see also [2]).



2.3 Lindley Equation and Large Deviation Result

Now consider a slotted-time single server queue with deterministic service rate

� and a FGN arrival process X, with Xk representing the number of arriving

cells within the kth time slot. Here, without loss of generality, we assume

Xk can take any real value (another name for such processes used in the

literature is the netput process) [20]. Let Qk denote the size of the queue at

time k = 0; 1; : : :. Assuming Q0 = 0, we have the following Lindley equation

[21]:

Qk = hQk�1 +Xk � �i+ = hQk�1 + Yki
+; for k = 1; 2; : : :

where the process Y = fYk : Yk = Xk � �; k = 1; 2 : : :g is called the work

load process. Now de�ne the total work load process W as fWk : Wk =Pk
i=1 Yi; k = 1; 2; : : :g. Then W is an stationary increment Gaussian process

with meanmk��k and variance �2k2H. Therefore, sinceX is a stationary and

reversible process (Hosking's method yields a stationary FGN process from the

start), we have [21]

Pr(Qk > b) = Pr(max
0�i�k

Wi > b); for k = 0; 1; 2; : : : (5)

Du�eld et al. [5] have shown the following steady-state, large deviation

result (assuming m = 0):

lim
b!1

b�2(1�H) log Pr(Q1 > b) = �c�2(1�H)(c+ �)2=2 (6)

where c = �=H�� and � > 0. Therefore, in contrast to traditional SRD mod-

els, the steady-state queueing distribution decays asymptotically in a Weibull

fashion rather than exponentially. Thus the performance predicted under FGN

may be far worse than under traditional models. This is to be expected since

FGN models capture the burstiness of tra�c at all time scales, something that

traditional Markovian models cannot exhibit.

From equation (5), we have, according to [6]

Pr(Qk > b) = Pr(max
0�i�k

Wi > b) > max
0�i�k

Pr(Wi > b)
4
= PW;k (7)

This approximation, which is an optimistic bound for Pr(Qk > b), can be quite

accurate for any time k, when b is large [6]. Since Wi is a Gaussian random

variable with mean (m� �)i and variance �2i2H we can write

PW;1
4
= sup

i�0
Pr(Wi > b) = sup

i�0
�

 
Y >

b+ (m� �)i

�2i2H

!



where Y is the standard normal random variable and � its cumulative proba-

bility distribution function. Furthermore,

arg sup
i�0

�

 
Y >

b+ (m� �)i

�2i2H

!
= arg inf

i�0

b+ (m� �)i

�2i2H
= ks

Without loss of generality for m = 0 a straightforward calculation can show

that

ks = db=ce (8)

where c = �
H��

as it is de�ned in equation (6) [5]. In brief, the derivation

above shows that as time k grows larger, there exists a value k = ks such that

PW;1
4
= sup

i�0
Pr(Wi > b) ' Pr(Wks > b)

Thus, loosely speaking, ks is the time when the queueing state enters steady-

state, and Pr(Q1 > b) ' Pr(Wks > b). A very accurate approximate formula

for calculating Pr(Wks > b) (i.e., the tail of a Gaussian distribution) was rec-

ommended in [22]. The above approximation procedures lead to quite accurate

results, as our results in Section 5 indicate.

Results in [5] deal with the steady-state asymptotics for a single-server

queue under FGN. While the self-similar property captures the burstiness of

tra�c at all time scales, realistic networks are expected to have a limiting time

scale. Therefore, predicted performance based on a steady-state regimemay be

overly pessimistic for practical applications. Furthermore, questions regarding

the transient behavior, small bu�er sizes, multiplexing e�ects, and, in general,

the performance of networks under LRD tra�c, remain unanswered. In the

following, we develop a simulation approach that can be used to answer the

above questions. But before that, we need to introduce Hosking's method to

generate synthetic FGN traces.

3 Generation of FGN Traces

We brie
y describe Hosking's generation procedure [8] in the following para-

graphs.



For a FGN process X with m = 0, the conditional mean and variance of

Xk, given the past values xk�1; xk�2; : : : ; x1, may be written as [23]

mk = E(Xkjxk�1; xk�2; : : : ; x1) =
kX

j=2

�kjxk�j+1 for k � 2 (9)

vk = Var(Xkjxk�1; xk�2; : : : ; x1) = �2
kY

j=2

(1 � �2jj) for k � 2 (10)

Here �jj is the jth partial correlation coe�cient of fXkg and the �kj are partial

linear regression coe�cients. For simulating a sample fx1; x2; : : : ; xn�1g of size

n from a FGN process, [8] describes the following algorithm:

1. Generate a starting value x1 from a Gaussian distribution N(0; �2). Set

N1 = 0, D1 = 1,v1 = �2.

2. Set N2 = r(1),D2 = D1,�22 = N2
D2
,m2 = �22x1 and v2 = (1 � �222)v1,

generate a value x2 from a Gaussian distribution N(m2; v2).

3. For k = 3; : : : ; n � 1, calculate �kj, j = 2; : : : ; k, recursively via the

equations

Nk = r(k � 1) �
k�1X
j=2

�k�1;jr(k � j)

Dk = Dk�1 �N2
k�1=Dk�1

�kk = Nk=Dk

�kj = �k�1;j � �kk�k�1;k�j+1 j = 2; : : : ; k � 1

Calculate mk =
Pk

j=2 �kjxk�j+1 and vk = (1� �2kk)vk�1. Generate xk from the

Gaussian distribution N(mk; vk).

The above method is applicable to any well-de�ned Gaussian process as

long as the correlation function r(k) is known [8]. However, due to the recur-

sive nature of Hosking's method, the computational e�ort required increases

approximately as O(n2) with the length of the trace, n.

Given the computational cost of trace generation, the number of replica-

tions required becomes crucial, especially when analyzing broadband multi-

media networks where one may want to simulate events that are rare, e.g., cell

losses with probability < 10�9, or extremely long cell waiting times. In such

cases, using conventional Monte Carlo simulation, we may need to generate

millions of traces by using Hosking's method, which is practically infeasible. In



the following, we develop a fast simulation approach based on importance sam-

pling, that makes Hosking's method applicable to quality-of-service evaluation

in communication networks.

4 Importance Sampling for the FGN Process

4.1 Importance Sampling Theory

Let U be a random variable that has a probability density function p(u) and

consider estimating the probability P that U is in some set A, then

P =
Z 1

�1
IA(t)p(t)dt = Ep[IA(U)]

where IA(�) is the indicator function of event A. Assume that p0(u) is an-

other density function. Assuming that p(u) = 0 whenever p0(u) = 0 (absolute

continuity condition), we have

P =
Z 1

�1
IA(t)

p(t)

p0(t)
p0(t)dx = Ep0[IA(U)

p(U)

p0(U)
] = Ep0[IA(U)L(U)] (11)

where L(u) = p(u)=p0(u) is a likelihood ratio (weight function) and the notation

p0 denotes sampling from the density p0(u). This equation suggests the follow-

ing variance reduction estimation scheme which is called importance sampling

(IS) (see [24] and references within): Draw N samples u1; : : : ; uN using the

density p0. Then, by equation (11), an unbiased estimate of P is given by

P̂N =
1

N

NX
n=1

IA(un)L(un)

i.e., P can be estimated by simulating a random variable with a di�erent den-

sity and then unbiasing the output IA(un) by multiplying with the likelihood

ratio. We call p0(u) the biased density. Since any density can be used as the

biased density, the question arising is how to choose a favorable biased density,

i.e., a density that reduces the variance of P̂ .

Although the unconstrained optimal density is easy to describe, implement-

ing it is not practically feasible because it represents a tautology (i.e., requires

knowledge of P ). Typically, the search for p0(u) focuses on constrained or

parametric sub-optimal solutions. When A is a rare event under density p(u),



one needs to choose a sampling density in order to make the event A more

likely to occur. In doing this, one typically reduces the variance of the esti-

mate P̂ . A general rule for choosing a favorable biased density is to make the

likelihood ratio small on the set A. Importance sampling has been successfully

applied to the simulation of various SRD processes. A variety of approaches,

namely analytical, large deviation-based, and statistical have been proposed

in order to choose p0(u) ([24, 25, 26, 27] and references within).

4.2 Biased Density and Likelihood Ratios for FGN

In the following we simulate a queueing system with a FGN arrival process

X as de�ned in Section 2.2, with mean value m = 0. De�ne a new process

Y0 = fY 0(k) : Y 0(k) = X(k)+m�
k; k = 1; : : :g. It is easy to see that process Y0,

which we call the biased work load process, is a FGN process with mean m�
k,

and that its variance and correlation function are the same as for X. Given a

realization (y01; : : : ; y
0
k�1) of processY

0, the corresponding realization of process

X satis�es xj = y0j �m�
j , for j = 1; 2; : : : ; k � 1. From equations (9){(10),

EY 0(Y 0k jy
0
k�1; : : : ; y

0
1) = m�

k + EX(Xkjy
0
k�1 �m�

k�1; : : : ; y
0
1 �m�

1)

= m�
k + EX(Xkjxk�1; : : : ; x1)

= m�
k +

kX
j=2

�kj(xk�j)

= m�
k +

kX
j=2

�kj(y
0
k�j �m�

k�j)

= m�
k +mk;Y 0 for k = 2; 3; : : : (12)

where

mk;Y 0

4
=

kX
j=2

�kj(y
0
k�j �m�

k�j)

Also from equations (9){(10)

VarY 0(Y 0kjy
0
k�1; : : : ; y

0
1) = VarX(Xkjxk�1; : : : ; x1)

In IS simulation, we simulate a biased work load process Y0 instead of the

work load process Y. In order to calculate the required likelihood ratio, we



let (y01; : : : ; y
0
k�1) be also taken as a realization of the work load process Y, as

de�ned in Section 2.3. Then,

EY (Ykjy
0
k�1; : : : ; y

0
1) = ��+

kX
j=2

�kj(y
0
k�j + �)

= ��+mk;Y for k = 2; 3; : : : (13)

where

mk;Y
4
=

kX
j=2

�kj(y
0
k�j + �)

We also have

VarY (Ykjy
0
k�1; : : : ; y

0
1) = VarY 0(Y 0kjy

0
k�1; : : : ; y

0
1)

The likelihood ratio up to time k is

L(k) =
fY (y01; : : : ; y

0
k)

fY 0(y01; : : : ; y
0
k)

=
fY (y01)fY (y

0
2jy

0
1) � � � fY (y

0
kjy

0
k�1; : : : ; y

0
1)

fY 0(y01)fY 0(y02jy
0
1) � � � fY 0(y0kjy

0
k�1; : : : ; y

0
1)

=
kY
i=1

Li (14)

where

L1 =
fY (y01)

fY 0(y01)

Li =
fY (y0ijy

0
i�1; : : : ; y

0
1)

fY 0(y0ijy
0
i�1; : : : ; y

0
1)

for i = 2; 3; : : : ; k

Then, from equations (12) to (13), we have

Li =
e�iy

0

i

Mi
; for i = 2; 3; : : :

where

�i = �
��mi;Y +m�

i +mi;Y 0

�2
Qi
j=2(1 � �2jj)

Mi = e��i(��mi;Y �m
�

i�mi;Y 0)=2

and

L1 = e�
2(m�

1+�)y
0

1+�
2
�m�2

1
2�2 (15)



The probability Pr(Qk > b) can be estimated by observing N i.i.d. repli-

cations of the realization w
(n)
1 ; : : : ; w

(n)
k of W, for n = 1; : : : ; N . Let L(n),

n = 1; : : : ; N , denote the corresponding likelihood ratio for each replication.

We propose the following simulation procedure for estimating Pr(Qk > b):

1. Initialize i = 1; n = 1;

2. Generate a sample point xi by Hosking's method described in Section 3;

3. Generate a sample point y0i by the equation y0i = yi+m�
i + � = xi+m�

i ;

4. Generate a sample point wi by replacing the process Y with the process

Y0 in the de�nition of total work load process;

5. If wi � b and i < k, then repeat from step 2 with i = i+ 1 ; otherwise

continue with step 6;

6. If wi � b and i = k, set In = 0 and go to step 8; otherwise continue

with step 7;

7. Set In = 1 and calculate L(n) = L(i) via equations (14) to (15);

8. If n = N evaluate the estimate using P̂ = 1
N

PN
n=1 InL

(n); otherwise set

n = n+ 1, i = 1 and goto step 2.

4.3 Optimal Biased Mean Value

Based on the above description, we can apply IS by suitably modifying (bias-

ing) the mean of the arrival process. However, an e�cient method to obtain a

favorable (or near-optimal) biased mean value remains to be devised. In this

paper, we describe two such methods: a simpler, approximate analytic ap-

proach, supported by a heuristic search based on stochastic optimization; and

an analytical method inspired by the Large Deviation-based \asymptotically

e�cient" biasing for Gaussian processes described in [28].

4.3.1 Approximate Approach

We �rst focus our attention on the approximate analytical approach. Since

Pr(Q1 > b) ' Pr(Wks > b), our approximate analytical approach consists of

�nding a near-optimal mean biased value for Pr(Wks > b) and then applying

that same biased value to the simulation of Pr(Q1 > b). SinceWks is normally

distributed with mean ��ks and variance �2k2Hs , the likelihood ratio at bu�er

size b will be

L(ks; b) =
e
�

(b+�ks)
2

2�2k2Hs

e
�

(b�m�

W
)2

2�2k2Hs



where m�
W is the biased mean value. By minimizing the above likelihood ratio

as suggested in [29, 27], we can �nd a near-optimal biased mean m�
W;opt ' b =

cks. Hence, a near-optimal constant biased mean value for process Y can be

found as follows

m�
i;opt = m�

opt ' m�
W;opt=ks ' c = �=H � �; i = 1; 2; : : : ; k (16)

Furthermore, it is reasonable to assume that m�
opt is also near-optimal for the

estimation of the (transient) probability Pr(Qk > b) when k < ks.

The stochastic search approach has been successfully applied to traditional

(SRD) models (see [26] and references within), and will be brie
y explained

in Section 5. In the next section we will show, using numerical examples,

that the results of the heuristic stochastic search and the approximate result

described in the last paragraph are in very close agreement. Therefore, the

above approximate value for m�
i;opt = m�

opt can be used directly or provide a

good initial estimate for the further search for a near-optimal biased mean

value.

4.3.2 Analytical Approach Based on Large Deviations

Following the exposition and notation in [28] on \Systems with small Gaussian

inputs," let fYn; n = 1; 2; : : :g be a sequence of d-dimensional Gaussian vectors

with distribution Fn(dy), mean  , and covariance �2
nC, where �

2
n = �2

0=n and

C is positive de�nite.

The asymptotic log-moment generating function

�(s) = lim
n!1

�n(s) = lim
n!1

1

n
log E[exp(n s �Yn)]

where s 2 <d and � denotes the Euclidean dot product, is in this case equal

to �(s) = [�2
0s

TCs]=2 + sT (the superscript T denotes vector transpose).

Furthermore, the Large Deviation rate function I(y), de�ned as the Legendre-

Fenchel transform of �(s), is

I(y) = sup
s2<d

fs � y � �(s)g =
(y� )TC�1(y� )

2�2
0

Let the goal of the simulation be to estimate the probability Pn = Pr(Yn 2

E) =
R
1E(y)Fn(dy), where 1E(�) is the indicator function of the Borel set E.



As a special case of the discussion in [28], let E be de�ned as fg(Yn) � bg,

where g(Yn) is a linear combination of the elements of Yn, and speci�cally in

this case, merely the sum of the elements of Yn (therefore E is a half-space).

Then the hypotheses of Theorem 1 in [28] hold and limn!1
1
n
log(Pn) =

�I(E), where I(E) = inft2E I(t) (the Cram�er transform of E). Furthermore,

there exists a \dominating point" v which is also the unique \minimum rate

point" (according to the de�nition in [28]) that satis�es v 2 @E and I(v)

= I(E) = infy2E I(y).

Let the \biased" distribution used in the importance sampling simulation

be given by

Fn(dy) = exp[n (s � y � �n(s))]Fn(dy)

Then, it follows from [28] that

F �n(dy) = F (v)
n (dy) = exp[n (sv � y � �n(sv))]Fn(dy)

where r�(sv) = v (or rI(v) = sv) and v is the dominating point, is an

\asymptotically e�cient" sampling distribution. Clearly, F �n(dy) is again

Gaussian with the same covariance matrix �2
nC but with its mean translated

to the point v.

In our case, we estimate the probability

Pr(Qk > b) = Pr(max
0�i�k

Wi > b) > max
0�i�k

Pr(
kX
i=1

Yi > b)

according to (7), where fYi; i = 1; 2; : : :g is an FGN trace, with C = fCijg =

fr(i � j)g (from (4)) and mean m = [m � �;m � �; : : : ;m � �] (� is the

service rate, and m has been assumed earlier to be equal to zero). Because

of the linear form of g(�), we can easily apply quadratic programming (see for

example [30]) to locate the dominating point v by calculating the minimum

of I(y) constrained on the boundary of E, that is by solving:

minI(y)

s.t.
kX
i=1

yi = b

(where yi are the elements of y) leading to [30]:

v = Ch(hTCh)�1 (b� (hTm)) +m

where h = [1; 1; 1; : : : ; 1]T .



5 Numerical Results

For IS simulation, the estimator P̂ of the unknown probability Pr(Qk > b)

depends on m;m�; �;H; k; b;N; �2. We let � be �xed at � = 1, since as shown

in the Appendix, by changing the number of multiplexed homogeneous sources

L, we can observe the same e�ect as if scaling �. Furthermore, we let m = 0.

We focus in our simulation experiments on two types of tra�c, one with

H = 0:7, and one with H = 0:9 representing burstier tra�c. In each case, we

consequently discuss the dependence of Pr(Qk > b) on the termination time

k, the bu�er size b, and on L, i.e., the number of multiplexed homogeneous

sources minus one. By homogeneous sources we mean sources which have

the same Hurst parameter. In the �nal part, we simulate multiplexing two

heterogeneous sources, one with H = 0:7 and one with H = 0:9. We also

provide representative values of the run-time improvement factor of our IS

technique over conventional MC simulation.

5.1 The Choice of Biased Mean m
�

It is important to point out that the IS estimator of Pr(Qk > b) is always

unbiased, regardless of the value of m�
i , i = 1; 2; : : :. However, the sample path

properties as well as the variance of the IS estimator are dramatically a�ected

by the choice of m�
i . This is the basis for the heuristic search procedure

for the optimal biased mean value, described in [26]. Fig. 1 is an example

of plotting the estimated Pr(Qk > b), for b = 50, while Fig. 2 plots the

normalized variance �2
P̂
=P̂ 2 of P̂ (the estimator of Pr(Qk > b)), both versus

a constant biased mean value m�
i = m�. In this experiment we assume that

H = 0:7 and � = 0:5. The estimate corresponding to m� = �0:5 is the result

of direct (conventional) Monte Carlo (MC) simulation. We can see that, as

m� increases, the normalized variance exhibits an obvious \valley" around

the most favorable values of m�. This behavior, as well as the behavior of

the estimated Pr(Qk > b) versus m�, is discussed in detail in [26] and the

references therein. For Case I, the minimum normalized variance appears

around m� = 0:21 which coincides with the approximate value m�
opt from

equation (16) which for this example turns out to be 0:214. For Case II, a

near-optimal value m� = 0:22 was found in a similar way.
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5.2 Case I: H = 0:7

5.2.1 The dependence on the termination time k

Fig. 3 depicts the estimated log Pr(Qk > b) versus the termination time

k. Each simulation is based on 1000 i.i.d. replications. The dependence of

log Pr(Qk > b) on k re
ects the transient nature of our experiments. The

curves show how the queueing state approaches asymptotically the steady-

state as k increases. In order to see how the time of entering steady-state

depends on the bu�er size b, in Fig. 3 we show results with di�erent bu�er

sizes. For b = 20, we also show the direct MC simulation result in order to

illustrate the agreement with the IS approach. With b increasing conventional

MC simulation may become impractically long. In this case simulations based

on IS may provide accurate results with a minimum number of independent

replications (in our case 1000). The reader should also notice that the tran-

sient period of the system as observed from the simulation is very close to the

ks predicted by equation (8), with c = �=H � �.

5.2.2 The dependence on the bu�er size b

We simulate the dependence of log Pr(Qk > b) on b for two termination times

k: one is the time ks as predicted by equation (8), and the other is 2� ks. We

compare our simulation results with the large deviation result of equation (6)
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Figure 4: Estimated log Pr(Qk > b) versus the bu�er size b and their corresponding
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parameter is H = 0:7, � = 0:5, and m� = 0:21.

and the optimistic bound of equation (7) in Fig. 4. Each simulation is based on

1000 i.i.d. replications. It can be seen that, with increasing termination time,

the di�erence between the simulation results and the large deviation result

is reduced. This behavior is indeed expected since the large deviation result

is based on a steady-state regime while our simulation captures the transient

behavior of the system.

5.2.3 The dependence on the number of multiplexed sources

Consider the aggregation of L independent FGN arrival processes Xi = fXk;i,

k = 1; 2; : : :g, i = 1; 2; : : : ; L, with zero mean, unit variance and correlation

function ri(k) = r(k); k = 0; 1; : : :, where r(k) is de�ned in equation (4).

Then, the aggregate tra�c X(L) =
PL

i=1Xi is again Gaussian, has zero mean,

variance L and the same correlation function r(k). Therefore, the aggregate

tra�c is also a FGN process. Thus the simulation procedures described in

Section 4.2 are directly applicable with �2 = L.

Fig. 5 shows the estimated log Pr(Qk > b) versus L, the number of ho-

mogeneous multiplexed sources minus one, for H = 0:7. Each simulation is

based on 1000 i.i.d. replications. Fig. 5 also depicts the optimistic bound of

equation (7). The service rate is adjusted to be L�� in order to maintain the

same load on the queue. The multiplexing gain (i.e., reduction in Pr(Qk > b)

with increasing L) is evident.
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5.3 Case II: H = 0:9

Since the simulation procedure is very similar to Case I, we only comment on

those features which are di�erent from previous experiments.

5.3.1 The dependence on the bu�er size b

Fig. 6 depicts the dependence of the estimated log Pr(Qk > b) on b, for H =

0:9. Comparing this result with Fig. 4, we �nd that increasing the bu�er

size is less e�ective in reducing the over
ow probability than for less bursty

sources (H = 0:7), while always less e�ective when compared with SRD models

(estimated Pr(Qk > b) decays less than exponentially fast). This agrees with

the theory of large deviations which predicts that Pr(Q1 > b) � de�ab
2(1�H)

for large b, where a, d are positive, slowly changing functions of b.

5.3.2 The dependence on the number of multiplexed sources

Fig. 7 shows the estimated log Pr(Qk > b) versus L, the number of multiplexed

sources minus one, for H = 0:9. A comparison of Fig. 7 with Fig. 5 reveals

that increasing the number of multiplexed sources leads to higher gains (larger

reductions in over
ow probability) for burstier sources (higher values of H).

Using large deviation theory (but also from the optimistic bound of Section 4)
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Figure 6: Estimated log Pr(Qk > b) versus the bu�er size b and their corresponding
con�dence intervals. Each simulation is based on 1000 i.i.d. replications. The Hurst
parameter is H = 0:9, � = 2:0, and m� = 0:22.

we obtain that Pr(Q1 > b) � de�aL
2H�1

for large b, where a, d are positive,

slowly changing functions of L. This fact is in agreement with our simulation

results.

5.4 Case III: Multiplexing Heterogeneous Sources

We now consider the aggregation of two independent FGN processes X1 and

X2. We assume that X1 and X2 have zero mean and unit variance. Their

corresponding correlation functions are de�ned as in (4) with H = H1 for X1

and H = H2 for X2. We assume H1 > H2 and the service rate to be �. Then

the mean of total work load process W is �� k, k = 1; 2; : : :, and the variance

is k2H1 + k2H2. We can show the following proposition:

Proposition 1. Let Xi, i = 1; 2, be two FGN tra�c processes with zero

mean, variances �2
i , and Hurst parameters Hi, i = 1; 2, respectively. Let

H1 > H2 and 1=2 < Hi < 1, i = 1; 2. Then the queue length process resulting

from the aggregate FGN tra�c satis�es:

lim
b!1

�2
1b
�2(1�H1) log Pr(Q1 > b) = �c�2(1�H1)(c+ �)2=2

The proof is given in the Appendix.2

Clearly, we have the same result as in equation (6) with H = H1. This

indicates that the steady-state tail distribution is dominated by the arrival

process with the larger Hurst parameter.
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The simulation procedures for multiplexing heterogeneous sources are sim-

ilar to the steps for a single source if we note that the aggregate process is still

a Gaussian process and its mean, variance and autocorrelation function can

be calculated from the corresponding values of individual sources. Therefore,

we simulate by generating two independent FGN traces according to Hosk-

ing's method and aggregate them in order to calculate the total input during

each time slot. While applying importance sampling, each FGN process is

biased separately (di�erent Hurst parameter values H imply di�erent biasing

values) and the likelihood ratio is taken as the product of the likelihood ratios

corresponding to each trace (due to independence).

Fig. 8 shows the result of multiplexing two self-similar sources, one with

H = 0:7 and another with H = 0:9. As we aggregate the two arrival sources,

we also increase accordingly the total service rate in order to maintain constant

load, and observe the gain from increased bu�er capacity. As shown in Fig. 8,

the burstier source (H = 0:9) will dominate the queueing tail distribution,

which agrees with Proposition 1 above.

5.5 IS Improvement Factor

The speed-up or improvement factor of IS over conventional MC simulation

denotes the relative decrease in the required number of replications in order to
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achieve the same statistical accuracy. Let �2
MC(N) denote the estimator vari-

ance after N replications using conventional MC simulation. Furthermore, let

�2
IS(N) denote the estimator variance after N replications using IS simulation.

Then the improvement factor is de�ned as �2
MC(N)=�2

IS(N).

Denote with P the probability Pr(Qk > b) to be estimated using N i.i.d.

replications. Then, �2
MC(N) = P (1 � P )=N . Since only an estimate P̂ of

P is known, we use the approximation �2
MC(N) ' P̂ (1 � P̂ )=N . We also

approximate the true �2
IS(N) with a sample variance estimate. Fig. 9 shows

the estimated improvement factor versus bu�er size, b, for Case I (H = 0:7),

and Case II (H = 0:9), respectively.

We observe signi�cant improvement factors for both cases. The improve-

ment factor increases dramatically as the bu�er size increases (i.e., as the over-


ow probability decreases), a fact that clearly demonstrates the e�ectiveness

of IS.

5.6 Results Based on Large Deviations

In order to illustrate the e�ectiveness of our second scheme that is based

on large deviations and the notion of asymptotic e�ciency [28], we present

simulation results where the importance sampling parameter values mi; i =

1; 2; : : : are calculated as in section 4.3.2 (called hereafter the \non-uniform"
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Figure 9: Estimated IS improvement factors over conventional MC simulation.
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bias, as opposed to the simpler method followed earlier that we refer to as the

\uniform" bias).

For all fast simulation cases, the number of independent replications was

1000 and the stop time was k = 1000. For the conventional Monte Carlo cases,

the number of independent replications was 100,000 and the stop time was also

k = 1000.

The service rates are � = 2:0 for the case of H = 0:9 and � = 0:5 for

the case of H = 0:7. The purpose of these simulations was to estimate the

relative accuracy of the non-uniform biasing scheme and compare it to that

of the uniform biasing scheme and of conventional Monte Carlo simulation.

For this purpose, we calculate the relative accuracy of each simulation run by

estimating the quantity
qdvar(P̂ )=P̂ (proportional to the half-width of the con-

�dence interval normalized by the sample mean). The results are illustrated

in Fig. 10 and Fig. 11, and they demonstrate both the consistently superior

performance the non-uniform biasing scheme (as expected) but also the fact

that the simpler to implement, uniform biasing performs also very well, as was

illustrated already in the previous sections. On the other hand, the accuracy of

conventional Monte Carlo simulation deteriorates very rapidly (approximately

exponentially) with the bu�er size, making conventional Monte Carlo com-

pletely impractical for bu�er sizes 200 < b < 4000 (at b = 200, the probability



lo
g 

  (
va

r(
P)

P
)

^^
10

^

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

Buffer size

Monte Carlo with H=0.7
Monte Carlo with H=0.9
nonuniform with H=0.7
nonuniform with H=0.9

uniform with H=0.7
uniform with H=0.9

Figure 10: Plot of the logarithm of relative simulation accuracy,
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P has already fallen to 10�5 for H = 0:9, and 10�7 for H = 0:7).

Finally, our empirical plot of log(Ê[P̂ 2])= log(P̂ ) is shown in Fig. 12{13,

and, for the case of non-uniform biasing, appears to converge to 2.0 as the

bu�er size increases, indicating an approximately \asymptotic e�cient" or

\optimal" behavior [28, 31]. In contrast, for the case of conventional Monte

Carlo simulation, the estimate of log(Ê[P̂ 2])= log(P̂ ) remains almost constant

at 1.0.

6 Conclusions

Analytical and simulation approaches applicable to traditional (short range

dependent) tra�c models may not be applicable to long-range dependent traf-

�c modeled by self-similar processes. Furthermore, predicted performance

based on a steady-state regime may be overly pessimistic for practical applica-

tions. However, analytical approaches to obtain transient queueing behavior

and queueing distributions for small bu�er sizes become quickly intractable.

In this paper, we have developed a fast simulation approach based on

importance sampling that can be used to simulate long-range dependent, self-

similar tra�c in queues e�ciently. Using this approach, we have simulated

the queueing behavior of self-similar processes in a multiplexer, including the

estimation of extremely low cell-loss probabilities. Our simulation experiments
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Figure 12: Plot of log(Ê[P̂ 2])= log(P̂ ) versus bu�er size (b � 200). The graph for
the case of importance sampling converges to 2.0 as bu�er size increases, indicating
\asymptotically e�cient" behavior, which is not the case for conventional Monte
Carlo.



lo
g(

E
(P

2
))

lo
g(

P
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 500 1000 1500 2000 2500 3000 3500 4000
buffer size

nonuniform twist with H=0.7
nonuniform twist with H=0.9

uniform twist with H=0.7
uniform twist with H=0.9
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provide insight on transient behavior that is not possible to predict using

existing analytical results. Finally, they show good agreement with existing

results when asymptotically approaching steady-state.
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Appendix: Proof of Proposition 1

First, we brie
y summarize some important results that appear in [5] which are

necessary for our results. Due to space restrictions, we restrict our presentation

to the very essentials leaving most of the algebraic manipulations to be checked

by the interested reader. We start by the following two assumptions:

Hypothesis A [5]: (i) There exist functions a; v : Z+ ! R+ that increase

to in�nity, such that for each � 2 R, the cumulant generating function de�ned

as the limit

�(�)
4
= lim

k!1
v�1k logEe�vkWk=ak



exists as an extended real number.

(ii) �(:) is essentially smooth, lower semi-continuous and there exists � > 0

for which �(�) < 0. Note that � is automatically convex.

(iii) There exists an increasing function h : Z+ ! R+ such that the limit

g(c)
4
= lim

k!1

v(a�1(k=c))

hk

exists for which c > 0, where

a�1(x)
4
= supfs 2 R+ : a(s) � xg

Hypothesis B [5]: There exists d > 0 such that

(i)

inf
c>0

g(c)��(c) = inf
c>d

g(c)��(c) <1

(ii)

lim
k!1

inf
c>d

��(c)vk
h(cak)

= inf
c>d

��(c)g(c)

(iii) for each 
 > 0

lim sup
b!1

h�1b log
1X

k=[a�1(b=d)]

e�
vk � � inf
c>0

g(c)��(c)

(iv)

lim sup
b!1

h�1b log a�1(b=d) = 0

where

��(x)
4
= sup

�2R
f�x� �(�)g

Now, we have the following theorem [5]:

Theorem 1. Suppose that Hypotheses A and B are satis�ed, then

lim sup
b!1

h�1b log Pr(Q > b) = � inf
c>0

g(c)��(c)

Proof of Proposition 1: De�ne

ak
4
= k

vk
4
=

k2

�2
1k

2H1 + �2
2k

2H2

hk
4
=

k2(1�H1)

�2
1



We �rst check Hypothesis A:

(i) It is easy to see that both ak and vk increase to in�nity, and

�(�) = lim
k!1

v�1k logEe�vkWk=ak

=
�2

2
� �� for all � 2 R

(ii) It is also easy to check that �(�) is a smooth function and there exists

� > 0 for which �(�) < 0.

(iii) For each c > 0, we can show

g(c) = lim
k!1

v(a�1(k=c))

hk
= c2H1�2

Therefore Hypothesis A is satis�ed, and we can easily get

��(x) = sup
�2R

f�x� �(�)g

=
(x+ �)2

2

We now check Hypothesis B: Conditions (i) and (ii) can be checked in a

straightforward manner. To check conditions (iii) we note that 9K > 0 such

that 8k > K

vk >
k2�2H1

2�2
1

Hence,

e�
vk < e
�

k(2�2H1)

2�2
1 for 
 > 0

Conditions (iii) and (iv) follow after some algebra. Then by Theorem 1,

Proposition 1 is proved.2
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