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Abstract–We previously showed the feasibility of a fault detection 
scheme for all-optical networks (AONs) based on decomposing 
networks into monitoring-cycles (m-cycles) [8]. In this paper, m-
cycle construction for fault detection is formulated as a cycle 
cover problem with certain constraints. A heuristic spanning-tree 
based cycle construction algorithm is proposed and applied to 
four typical networks: NSFNET, ARPA2, SmallNet, and Bellcore. 
Three metrics: the grade of fault localization, wavelength 
overhead, and the number of cycles in a cover, are introduced to 
evaluate the performance of the algorithm. The results show that 
it achieves nearly optimal performance. 

Index Terms – Fault detection and localization, all-optical 
network, monitoring cycle, cycle cover 

I. INTRODUCTION 
Fault detection and localization are essential for providing 

continuous and reliable services in all-optical networks (AONs) 
with ever-increasing data rate as well as wavelength number 
and density in wavelength-division multiplexing (WDM). For 
AONs, the fault detection and localization can be performed in 
either physical or IP layer. Most routing protocols in the IP 
layer, e.g. OSPF or IS-IS, have inherent such functionality [1]. 
Unfortunately, the long detection time in IP layer (typical at 
seconds-level) makes it difficult to achieve time-critical 
recovery. Thus some effective and efficient fault detection 
mechanisms at optical layer are required. However, existing 
fault detection and localization mechanisms for conventional 
networks cannot be applied to AONs directly due to the lack 
of electrical terminations [2]. Even some detection methods 
deployed in optical networks with opto-electro-opto (OEO) 
conversion cannot be transplanted to AONs, e.g. examples in 
[3].In the physical layer, network faults can be detected by 
measuring the optical power, analyzing optical spectrum, 
using pilot tones, or by optical time domain reflectometry 
(OTDR), etc. [4]. A fault detection scheme was developed by 
assigning monitors to the sinks of each optical multiplex 
section and optical transmission section [5]. The scheme 
proposed in [6] modeled all possible states of a link as a finite 
state machine (FSM). The FSM for each link keeps tracks of 
the current state of the link by assigning a monitor to the link. 
Ideally, all potential faults could be completely detected and 
located by assigning a monitor to each link (channel). 
However, it is usually not feasible to implement the one-
monitor-per-link scheme in large-scale networks because of 

the large number of required monitors and the real-time 
processing of huge amount of redundant alarms. 

Other than assigning a monitor per link, some authors 
placed a monitor to each established lightpath [7]. Some 
heuristics were proposed to reduce the required number of 
monitors based on the information of redundant alarms. This 
scheme was effective when it was proposed, since the number 
of lightpaths in an AON was relatively small and they did not 
change frequently once established. However, the number of 
lightpaths soars so much nowadays with the use of DWDM 
technology that this scheme will introduce a huge cost due to 
the large number of monitors required. Furthermore, most 
AONs currently support dynamically lightpath provisioning so 
that the monitor placement has to be dynamically re-calculated 
and re-located once some lightpaths are changed. 

In this paper, we propose a novel approach at physical layer 
for fault detection and localization in AONs through 
decomposing the given network into a set of cycles, which 
form a cycle cover for the network. A spanning-tree based 
cycle finding algorithm is developed and applied to four 
typical example networks: NSFNET, ARPA2, SmallNet, and 
Bellcore. The performance of the proposed approach is 
evaluated in terms of the grade of fault localization, costs, and 
impacts on wavelength utilizations. 

This paper is organized into the following sections. Section 
II introduces the concept of monitoring cycles and formulates 
the problem of constructing monitoring cycles to the cycle 
cover problem. Section III proposes a heuristic spanning-tree 
based cycle finding algorithm. In section IV, the proposed 
cycle finding algorithm is applied to four typical example 
networks: NSFNET, ARPA2, SmallNet and Bellcore. The 
performances of the proposed algorithms are also evaluated. 
Finally, some conclusions are outlined in Section V. 

II. MONITORING CYCLES AND CYCLE CONSTRUCTION 
FORMULATION 

We previously proposed a fault detection and performance-
monitoring scheme based on decomposing an AON into a set 
of cycles [8]. All nodes and links in the network appear in at 
least one of these cycles, which form a cycle cover of the 
network. A network monitor is assigned to one node in each 
cycle and a loopback supervisory channel is set up in this 
cycle. A cycle with monitor and supervisory channel is 



 

defined as “monitoring cycle (m-cycle)”. Depending on the 
type of monitors in m-cycles (e.g. optical power meters, 
optical spectrum analyzers, transceivers, etc.), various 
performance parameters of AONs can be measured, such as 
optical power, channel wavelength, optical signal-to-noise 
ratio, and bit error ratio. Flexible index thresholds can be set to 
determine whether a network fault occurs. 

A meshed AON can be modeled as a finite undirected graph 
G(V,E), where V is the set of vertices (nodes) and E is the set 
of edges (links). We assume that such a graph is connected 
and it contains neither loops nor multiple edges. Furthermore, 
a bridge link† is a single-failure point for the network, thus is 
usually avoided during the network topology design. Thus 
G(V,E) is assumed to be bridgeless. 

A cycle (denoted as c) of the graph G is a sub-graph of G 
that is connected and regular of degree two. It is often 
identified with its edge-set. A cycle cover (denoted as C) of a 
graph is a set of cycles in which each vertex and edge of the 
graph appears at least in one of these cycles. According to the 
m-cycle definition, the set of m-cycles is a cycle cover for a 
given graph.  Let { }McccC ,,, 21 L=  be such a set of m-
cycles. For an edge Ee ∈ , let )(eC  denote the number of 
cycles in C that contain e, i.e. |}:{|)( iceieC ∈= ‡ . When 

teC =)( , we say that the cover time of edge e is t in C. The 
length of a cycle is the number of edges it contains, denoted 
by ||)( ii cclen = . The length of C, denoted as )(Clen , is as 
summary of all cycles’ lengths in C. Obviously we have, 

∑∑ == == L
j j
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In building an m-cycle set (a cycle cover) for a graph, we 
have to take the following considerations into account, 

1) The grade of fault localization: A network fault triggers 
alarms in the m-cycles in which it appears, but not others. 
Reversely, if alarms are received in some m-cycles but no 
others, it implies that the potential faulty links are the common 
links of these m-cycles. Generally, a binary indication bit jm  

can be defined for m-cycle jc , to indicate whether or not a 
fault occurs and thus an alarm appears in it, 
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The sequence of such bits for a link forms an alarm code (M 
bits in total). Alarms are sent to a centralized network 
management unit (NMU) and alarm codes are generated in 
real time. Furthermore, for any link ),,2,1( LiEei L=∈  and 
m-cycle jc , a binary associative bit ija is defined as, 

                                                 
† An edge is a bridge of a graph if the graph becomes from a connected graph 
to be a disconnected one after deleting it. 
‡ | · | represents the set cardinality, i.e. the number of elements in a finite set. 
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where Li ,,2,1 L=  and Mj L,2,1= . The sequence of 
associative bits of a link corresponding to all the m-cycles 
forms the associative code (M bits in total). By matching the 
real-time alarm codes with associative codes of all links, any 
fault can be located in the network. To quantitatively measure 
the grade of localization, we introduce the concept of 
Localization Degree (denote as I) which is defined as the 
average size of candidate sets over all possible alarm codes, 

 setscandidateempty -non of number
 setcandidate the of size

I  setscandidate∑
=  (4) 

In the ideal case, every candidate set has only a single element 
and 1=idealI  (defined as complete localization). In building 
m-cycles for fault detection, we want to minimize the 
localization degree, i.e. MIN I. 

2) Wavelength overhead: In each link, some wavelength 
channels are reserved for m-cycles. These channels cannot be 
used for carrying user traffic and therefore become an 
overhead. The number of reserved wavelengths (denoted as Λ ) 
within a link is equal to the cover times of that link in the 
cycle cover. Given a graph with N vertices, L edges and M m-
cycles, the average number of reserved wavelengths ( aveΛ ) 
for all edges is equal to the average cover time and, 

Llen(C)L)C(eL
i iave ==Λ ∑ =1   (5) 

To quantitatively analyze the relative overhead due to m-
cycles, we define the average wavelength overhead per link 
brought to the network by m-cycles as FWOH aveave /Λ= , 
where F is the number of total available wavelengths per link. 
To minimize the wavelength overhead, we have to minimize 

aveΛ , which is equivalently to minimize the cycle cover 
length. Consequently, finding m-cycles can also be formulated 
to the least cost cycle cover problem for un-weighted graphs. 

3) The number of cycles in the cover: Since a monitor and a 
dedicated supervisory channel are assigned for each m-cycle, 
this is the number of required monitors and reserved 
wavelengths. Thus it is a measurement of the cost for m-cycle 
based fault detection and localization. To minimize this cost, 
we have to minimize the number of cycles, i.e. || CMIN . 

It has been proved that cycle covers exist for each 
bridgeless, connected, undirected graph and could be obtained 
in running time )( 2nο  [9]. A polynomial-time algorithm was 
also reported for constructing cycle covers [10]. Such works 
are focused on the least cost cycle cover problem. They do not 
consider the localization degree and cycle numbers. We 
previously developed two m-cycle construction algorithms: 
heuristic depth-first searching and shortest path Eulerian 
matching algorithm, with a balance of all three considerations 



 

[8]. In this paper, we propose a heuristic spanning-tree based 
m-cycle construction algorithm for the same purpose, while 
improving the performance in terms of localization degree. 

III. HEURISTIC SPANNING-TREE BASED CYCLE CONSTRUCTION 

A. Preliminary 
For a connected, bridgeless, simple graph G(V,E), there 

must exist a spanning-tree T. Telink ∉∀  (e is called a 
“chord”), if the two endpoints of e are 1n  and 2n , then 

Tnn ∈21,  and there must exist a path Tp ∈  connecting 

21,nn . Thus link e and path p form a cycle. We say this cycle 
is generated by the chord e. Each chord generates such a 
unique cycle. We also have the following cycle cover 
existence lemma [9], 

Lemma: There exists at least one cycle cover for a 
bridgeless graph G(V,E). 

Cycles Mccc ,,, 21 L  are called independent if their 
associative vectors are linearly independent§. H. Walther has 
proved the following theorem in [11], 

Walther’s Theorem: Let G be a connected graph with L 
edges and N vertices. Then there exist L-N+1, but no more 
independent elementary cycles**. 

Based on the above lemma and theorem, we claim the 
following theorem, 

Theorem: For a connected, bridgeless, simple graph G with 
a given spanning-tree, cycles generated by all chords construct 
a cycle cover for G. 

Proof: Let G has L edges, N vertices, and the spanning-tree 
is T. Then all edges can be partitioned into two sets: N-1 edges 
in T and L-N+1 edges not in T. 

(1) Each edge not in T is a chord. It generates a cycle and is 
covered by this cycle. There are L-N+1 such cycles. 

(2) Assume Te ∈∃ * and *e  is not covered by any cycles 
generated by those chords. Because of the lemma, there must 
exist another cycle 0c  in which *e  appears. The associative 

vector of 0c  is ),,,,,( 0
*
0

2
0

1
0

Laaaa LL=0a , where 1*
0 =a  and 

corresponding to the position of edge *e . For all other cycles, 
the components at this position of the associative vectors are 
zero, because they do not cover edge *e . Thus cycle 0c  is 
independent from all other L-N+1 cycles. Consequently, by 
adding 0c , graph G has L-N+2 independent cycles. This is a 
contradiction to Walther’s theorem.   # 

                                                 
§ A group of vectors n21 aaa ,,, L  are linearly independent if and only if 

01 =∑ =
= iani

i ik  holds when 021 ==== nkkk L . 
** A cycle is called elementary cycle if no vertex is encountered more than 
once when traversing it. Each cycle can be partitioned into elementary cycles. 
In this paper, a cycle is an elementary cycle. 

In the proof, please note that a cycle cover of graph G is 
uniquely determined by the given spanning-tree. 

B. Heuristic spanning-tree (HST) based cycle finding 
Breadth-first and depth-first spanning-trees (BFST and 

DFST) are well known and have been in common use for a 
long time. Numerous algorithms to generate such spanning-
trees have been intensively studied [12]. Fig. 1 gives three 
spanning-trees for an example graph and m-cycles generated 
by corresponding chords. Numbers of cycles in the covers 
generated by various spanning-trees are the same for the graph. 
By enumerating the faulty candidates for all possible alarm 
codes, we find that localization degrees for them are also the 
same (I=1). However, the figure shows that the average cover 
time (i.e. the average wavelength overhead) per link is smaller 
for the cover generated by BFST than by DFST. Furthermore, 
the average cover time might be decreased by including nodes 
with large degrees in the tree (comparing b and c). This 
observation leads us to choose BFST and apply a heuristic rule 
of putting the large-degree nodes into the spanning-tree as 
early as possible while generating the spanning-tree for 
constructing a cycle cover. A heuristic spanning-tree (HST) 
based cycle construction algorithm is then given below, 

1. Initial: for a graph G, label the degrees of all nodes; set 
the spanning-tree T=null; select the node with the 
maximum degree as the root. Add all links to T that are 
incident to the root. 

2. For each node Tni ∈ , update its degree label with the 
number of links that are incident to in  and connect in  
with nodes not in T. 

3. Select the node with the maximum degree label in T, add 
all links to T that are incident to the selected node and 
connect it with nodes not in T. 

4. Repeat step 2-3 until all node-degree labels are zero. Now 
T is a spanning-tree of G. 

5. Given T, construct the cycles for all chords, they form a 
cycle cover and are the required m-cycles. 
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Fig. 1. Spanning-tree and cycle cover 
(a) DFST: max cover time = 5/link, average cover time = 2.3/link 
(b) BFST (rooted from random nodes): max cover time = 5/link, average 

cover time = 1.9/link 
(c) BFST (rooted from the node with maximum degree): max cover time = 

2/link, average cover time = 1.5/link 

IV. EXAMPLES AND EVALUATIONS 
The HST based cycle construction algorithm is applied to 

four typical example networks (NSFNET, ARPA2, SmallNet, 



 

and Bellcore). The network topologies, spanning-trees, and m-
cycles are shown in Fig. 2. The performances of the algorithm 
are evaluated in terms of those metrics described in Section II, 
including localization degree, cost, and wavelength overhead. 

Table 1 enumerates all possible alarm codes and faulty 
candidate sets for NSFNET as an instance. Similar results can 
be obtained for other example networks (ARPA2, SmallNet, 
and Bellcore) in the way. Table 2 summarizes these results 
and compares with the HDFS and SPEM algorithms reported 
in [8]. The comparison shows that the HST algorithm has 
much better performance than HDFS and SPEM algorithms in 
terms of the fault localization degree. Further analyses indicate 
that the HST algorithm performs even better in terms of 
localization degree for graphs with larger average node 
degrees. More specifically, for graphs with average node 
degree larger than 3.0, the localization degrees of HST 
algorithm are very close to the ideal case. This observation 
implies that such fault detection and localization approaches 
are suitable for complex networks (with large average node 
degree), and thus are scalable. 

TABLE 1. Fault localization results: NSFNET - HST 

c1 c2 c3 c4 c5 c6 c7 c8
0 0 0 0 0 0 0 0 null

1 10-14
1 9-14
1 1 12-14

1 6-11, 9-11
1 8-9
1 1 1 9-13

1 5-7, 7-8
1 1 2-8

1 4-10
1 1 10-13
1 1 1 6-12
1 1 1 1 1 12-13

1 1-4
1 1 1 3-6
1 1 4-5
1 1 1 5-6

1 1-2
1 1 1 2-3
1 1 1-3

N/A

faulty 
candidates

alarm codes

others  
The cost of the proposed scheme is measured by the number 

of required monitors and reserved wavelengths for m-cycles. 
The cost of wavelength is evaluated by aveΛ , maxΛ , and 

aveWOH , as described in Section II. Results in Table 2 show 
that numbers of both maximum and average reserved 
wavelengths for m-cycles obtained by HST algorithm are 
larger than HDFS and SPEM. This is the payment for the 
benefit in localization degree. Nevertheless, with the DWDM 
technology, the number of wavelengths in a single link tends 
to become larger. For example, it was reported even in 2001 
that 432 wavelengths could be multiplexed into a single fibre 
[13]. In current commercial DWDM systems, it is easy to 

boost the number of available wavelengths in a fibre to 192 or 
above [14]. Even for a small number of available wavelengths 
per link, e.g. F=64, the wavelength overheads for HST 
algorithm are small (around 3%, see Table 2). Such overheads 
have trivial impact on network utilization, if it is not negligible. 

The cost of monitors is weighted by the number of monitors 
for m-cycles, i.e. the number of m-cycles (denoted as M). For 
comparing with the monitor-per-link case, a cost gain is 
calculated as LMLG /)( −=  where L is the number of links. 
The cost gains of HST are compared in Table 2 with HDFS 
and SPEM for example networks. Because the monitor-per-
link approach always achieves complete localization, for a fair 
comparison, we add some extra monitors for those links that 
cannot be fully localized under the HST algorithm to achieve 
complete localization. For example, a straightforward method 
would be the following one. If there are 2≥K  links in a 
faulty candidate set, we assign 1−K  extra monitors to 1−K  
of those K links. More efficient methods might be applied for 
achieving complete localization, e.g. using extra m-cycles. 
Therefore, HST algorithm still has good cost gains, although 
the M values of HST are larger than HDFS and SPEM. Denote 
the number of extra monitors as M ′ , the complete localization 
can be achieved and the cost gain calculation is revised as, 

LMMLG ))(( ′+−=′     (6) 

Revised cost gains obtained from the four example networks 
are also compared in Table 2. Again, the average node degree 
affects the cost gain. For graphs whose average node degree is 
3.0 or above, the cost gain for HST is 40–52%. Even for the 
worst case, ARPA2, the cost gain is still no less than 20%. 
Such results show that under a fair comparison, the cost gains 
of HST are better than HDFS and SPEM. 

The fault detection scheme in [7], as described in Section I, 
placed a monitor per path. In a N-node network, typically each 
node has to communicate with all the others, thus the number 
of potential paths is )1( −NN . Even with the 50% savings of 
monitors (in maximum) by applying the proposed heuristic 
optimization algorithm, the number of required monitors is 
still )( 2NO . Clearly, the m-cycle based approach achieves 
significant cost gains in all examples compared to either the 
monitor-per-link or monitor-per-path case. 

V. CONCLUSION 
In mesh AONs, network faults can be detected and located 

by decomposing them into monitoring-cycles (m-cycles). We 
formulated the m-cycle construction as the cycle cover 
problem with certain constraints. A heuristic spanning-tree 
(HST) based m-cycle construction algorithm is developed and 
evaluated in terms of the localization degree, wavelength 
overhead, and cost gain. The proposed HST algorithm is 
applied to four typical networks (NSFNET, ARPA2, SmallNet, 
and Bellcore) and compared to the previously reported 
algorithms, HDFS and SPEM. The comparison results show 
that the performance of localization degree for HST algorithm 
is better than HDFS and SPEM. Analyses indicate that the 



 

average node degree of a network plays an important role in 
the performance of m-cycle based fault detection and 
localization approaches. The fact that m-cycle based 
approaches can achieve better performance in networks with 
larger average node degree implies that such approaches are 
suitable for complex networks and thus scalable. 

The HST algorithm introduces more monitors than HDFS 
and SPEM, however, in a fair comparison of achieving 
complete localization, it has better cost gains than HDFS and 
SPEM. Additionally, all the three m-cycle construction 
algorithms have good cost gains over either monitor-per-link 
or monitor-per-path case. Finally, the wavelength overheads 
due to m-cycles are negligible in all approaches. Therefore, the 
HST algorithm is effective and cost-efficient. 
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TABLE 2. Comparison of localization degree, wavelength overhead, and cost gains 

Network 
example

Ave. node 
degree Algorithm localization 

degree
max candidate 

set size M G (%) M' M+M' G' (%)

HST 1.105 2 5 1.90 2.97 8 61.9 2 10 52.4
HDFS 1.500 3 3 1.57 2.45 6 71.4 7 13 38.1
SPEM 3.000 7 2 1.24 1.94 4 80.9 15 19 9.5
HST 2.500 6 3 1.60 2.50 5 80.0 15 20 20.0

HDFS 3.130 6 3 1.36 2.13 4 84.0 16 20 20.0
SPEM 5.000 8 2 1.20 1.88 4 84.0 18 22 12.0
HST 1.000 1 6 1.95 3.05 13 40.9 0 13 40.9

HDFS 1.470 3 3 1.55 2.42 8 63.6 7 15 31.8
SPEM 3.670 6 2 1.18 1.84 4 81.8 16 20 9.1
HST 1.077 2 8 1.96 3.06 14 50.0 2 16 42.9

HDFS 2.150 6 3 1.43 2.23 6 78.6 15 21 25.0
SPEM 4.670 8 2 1.14 1.78 5 82.1 21 26 7.1

Bellcore 3.73

SmallNet 4.40

ARPA2 2.38

NSFNET 3.00
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(b) ARPA2: 21 nodes, 25 links
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(c) SmallNet: 10 nodes, 22 links
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chord chord
c1: 1 – 2 –7–1 c10: 6 –10 –7–6
c2: 1 – 6 –7–1 c11: 8 – 9 –7–8
c3: 2 – 3 –9–7–2 c12: 8 –10 –7–8
c4: 2 – 8 –7–2 c13: 9 –10 –7–9
c5: 3 – 4 –9–3
c6: 3 – 8 –7–9–3
c7: 4 – 5 –9–4
c8: 5 – 6 –7–9–5
c9: 5 –10 –7–9–5

(c) SmallNet: 10 nodes, 22 links
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8 9

chord chord
c1: 1 – 2 –7–1 c10: 6 –10 –7–6
c2: 1 – 6 –7–1 c11: 8 – 9 –7–8
c3: 2 – 3 –9–7–2 c12: 8 –10 –7–8
c4: 2 – 8 –7–2 c13: 9 –10 –7–9
c5: 3 – 4 –9–3
c6: 3 – 8 –7–9–3
c7: 4 – 5 –9–4
c8: 5 – 6 –7–9–5
c9: 5 –10 –7–9–5     

(d) Bellcore: 15 nodes, 28 links

1

2

3

4 5

6

7

8

9
10

11

12
13

14

15

chord chord
c1: 1 – 9 –8–2–1 c11: 9 –10 –2–8–9
c2: 1 –10 –2–1 c12: 9 –11 –2–8–9
c3: 3 –13 –2–3 c13: 12–13 –2–8–12
c4: 4 – 5 –6–3–4 c14: 12–14 –6–3–2–8–12
c5: 4 –13 –2–3–4
c6: 6 – 7 –8–2–3–6
c7: 6 –12 –8–2–3–6
c8: 5 –15 –6–5
c9: 7 –12 –8–7
c10: 8 –11 –2–8

(d) Bellcore: 15 nodes, 28 links

1
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7

8

9
10

11

12
13

14

15

chord chord
c1: 1 – 9 –8–2–1 c11: 9 –10 –2–8–9
c2: 1 –10 –2–1 c12: 9 –11 –2–8–9
c3: 3 –13 –2–3 c13: 12–13 –2–8–12
c4: 4 – 5 –6–3–4 c14: 12–14 –6–3–2–8–12
c5: 4 –13 –2–3–4
c6: 6 – 7 –8–2–3–6
c7: 6 –12 –8–2–3–6
c8: 5 –15 –6–5
c9: 7 –12 –8–7
c10: 8 –11 –2–8  

Fig. 2. m-cycles obtained by HST for (a) NSFNET; (b) ARPA2; (c) SmallNet; (d) Bellcore (links in spanning-trees are in dark) 


