
Spanning-Tree Based Monitoring-Cycle Construction
for Fault Detection and Localization in Mesh AONs

Hongqing Zeng and Changcheng Huang
Dept. of Systems and Comp. Eng., Carleton Univ.

1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6

Alex Vukovic
Communications Research Centre Canada

3701 Carling Ave., Ottawa, ON, Canada K2H 8S2

Abstract–We previously showed the feasibility of a fault detection
scheme for all-optical networks (AONs) based on decomposing
networks into monitoring-cycles (m-cycles) [8]. In this paper, m-
cycle construction for fault detection is formulated as a cycle
cover problem with certain constraints. A heuristic spanning-tree
based cycle construction algorithm is proposed and applied to
four typical networks: NSFNET, ARPA2, SmallNet, and Bellcore.
Three metrics: the grade of fault localization, wavelength
overhead, and the number of cycles in a cover, are introduced to
evaluate the performance of the algorithm. The results show that
it achieves nearly optimal performance.

Index Terms – Fault detection and localization, all-optical
network, monitoring cycle, cycle cover

I. INTRODUCTION
Fault detection and localization are essential for providing

continuous and reliable services in all-optical networks (AONs)
with ever-increasing data rate as well as wavelength number
and density in wavelength-division multiplexing (WDM). For
AONs, the fault detection and localization can be performed in
either physical or IP layer. Most routing protocols in the IP
layer, e.g. OSPF or IS-IS, have inherent such functionality [1].
Unfortunately, the long detection time in IP layer (typical at
seconds-level) makes it difficult to achieve time-critical
recovery. Thus some effective and efficient fault detection
mechanisms at optical layer are required. However, existing
fault detection and localization mechanisms for conventional
networks cannot be applied to AONs directly due to the lack
of electrical terminations [2]. Even some detection methods
deployed in optical networks with opto-electro-opto (OEO)
conversion cannot be transplanted to AONs, e.g. examples in
[3].In the physical layer, network faults can be detected by
measuring the optical power, analyzing optical spectrum,
using pilot tones, or by optical time domain reflectometry
(OTDR), etc. [4]. A fault detection scheme was developed by
assigning monitors to the sinks of each optical multiplex
section and optical transmission section [5]. The scheme
proposed in [6] modeled all possible states of a link as a finite
state machine (FSM). The FSM for each link keeps tracks of
the current state of the link by assigning a monitor to the link.
Ideally, all potential faults could be completely detected and
located by assigning a monitor to each link (channel).
However, it is usually not feasible to implement the one-
monitor-per-link scheme in large-scale networks because of

the large number of required monitors and the real-time
processing of huge amount of redundant alarms.

Other than assigning a monitor per link, some authors
placed a monitor to each established lightpath [7]. Some
heuristics were proposed to reduce the required number of
monitors based on the information of redundant alarms. This
scheme was effective when it was proposed, since the number
of lightpaths in an AON was relatively small and they did not
change frequently once established. However, the number of
lightpaths soars so much nowadays with the use of DWDM
technology that this scheme will introduce a huge cost due to
the large number of monitors required. Furthermore, most
AONs currently support dynamically lightpath provisioning so
that the monitor placement has to be dynamically re-calculated
and re-located once some lightpaths are changed.

In this paper, we propose a novel approach at physical layer
for fault detection and localization in AONs through
decomposing the given network into a set of cycles, which
form a cycle cover for the network. A spanning-tree based
cycle finding algorithm is developed and applied to four
typical example networks: NSFNET, ARPA2, SmallNet, and
Bellcore. The performance of the proposed approach is
evaluated in terms of the grade of fault localization, costs, and
impacts on wavelength utilizations.

This paper is organized into the following sections. Section
II introduces the concept of monitoring cycles and formulates
the problem of constructing monitoring cycles to the cycle
cover problem. Section III proposes a heuristic spanning-tree
based cycle finding algorithm. In section IV, the proposed
cycle finding algorithm is applied to four typical example
networks: NSFNET, ARPA2, SmallNet and Bellcore. The
performances of the proposed algorithms are also evaluated.
Finally, some conclusions are outlined in Section V.

II. MONITORING CYCLES AND CYCLE CONSTRUCTION
FORMULATION

We previously proposed a fault detection and performance-
monitoring scheme based on decomposing an AON into a set
of cycles [8]. All nodes and links in the network appear in at
least one of these cycles, which form a cycle cover of the
network. A network monitor is assigned to one node in each
cycle and a loopback supervisory channel is set up in this
cycle. A cycle with monitor and supervisory channel is

defined as “monitoring cycle (m-cycle)”. Depending on the
type of monitors in m-cycles (e.g. optical power meters,
optical spectrum analyzers, transceivers, etc.), various
performance parameters of AONs can be measured, such as
optical power, channel wavelength, optical signal-to-noise
ratio, and bit error ratio. Flexible index thresholds can be set to
determine whether a network fault occurs.

A meshed AON can be modeled as a finite undirected graph
G(V,E), where V is the set of vertices (nodes) and E is the set
of edges (links). We assume that such a graph is connected
and it contains neither loops nor multiple edges. Furthermore,
a bridge link† is a single-failure point for the network, thus is
usually avoided during the network topology design. Thus
G(V,E) is assumed to be bridgeless.

A cycle (denoted as c) of the graph G is a sub-graph of G
that is connected and regular of degree two. It is often
identified with its edge-set. A cycle cover (denoted as C) of a
graph is a set of cycles in which each vertex and edge of the
graph appears at least in one of these cycles. According to the
m-cycle definition, the set of m-cycles is a cycle cover for a
given graph. Let { }McccC ,,, 21 L= be such a set of m-
cycles. For an edge Ee ∈ , let)(eC denote the number of
cycles in C that contain e, i.e. |}:{|)(iceieC ∈= ‡ . When

teC =)(, we say that the cover time of edge e is t in C. The
length of a cycle is the number of edges it contains, denoted
by ||)(ii cclen = . The length of C, denoted as)(Clen , is as
summary of all cycles’ lengths in C. Obviously we have,

∑∑ == == L
j j

M
i i eCcClen 11)(||)((1)

In building an m-cycle set (a cycle cover) for a graph, we
have to take the following considerations into account,

1) The grade of fault localization: A network fault triggers
alarms in the m-cycles in which it appears, but not others.
Reversely, if alarms are received in some m-cycles but no
others, it implies that the potential faulty links are the common
links of these m-cycles. Generally, a binary indication bit jm

can be defined for m-cycle jc , to indicate whether or not a
fault occurs and thus an alarm appears in it,

Mj ;
c in appears alarm no0

c in appears alarm an
m

j

j
j L,2,1

1
=

= (2)

The sequence of such bits for a link forms an alarm code (M
bits in total). Alarms are sent to a centralized network
management unit (NMU) and alarm codes are generated in
real time. Furthermore, for any link),,2,1(LiEei L=∈ and
m-cycle jc , a binary associative bit ija is defined as,

† An edge is a bridge of a graph if the graph becomes from a connected graph
to be a disconnected one after deleting it.
‡ | · | represents the set cardinality, i.e. the number of elements in a finite set.

=
ji

ji
ij cby overedc not is e

cby covered is e
a

0

1
 (3)

where Li ,,2,1 L= and Mj L,2,1= . The sequence of
associative bits of a link corresponding to all the m-cycles
forms the associative code (M bits in total). By matching the
real-time alarm codes with associative codes of all links, any
fault can be located in the network. To quantitatively measure
the grade of localization, we introduce the concept of
Localization Degree (denote as I) which is defined as the
average size of candidate sets over all possible alarm codes,

 setscandidateempty -non of number
 setcandidate the of size

I setscandidate∑
= (4)

In the ideal case, every candidate set has only a single element
and 1=idealI (defined as complete localization). In building
m-cycles for fault detection, we want to minimize the
localization degree, i.e. MIN I.

2) Wavelength overhead: In each link, some wavelength
channels are reserved for m-cycles. These channels cannot be
used for carrying user traffic and therefore become an
overhead. The number of reserved wavelengths (denoted as Λ)
within a link is equal to the cover times of that link in the
cycle cover. Given a graph with N vertices, L edges and M m-
cycles, the average number of reserved wavelengths (aveΛ)
for all edges is equal to the average cover time and,

Llen(C)L)C(eL
i iave ==Λ ∑ =1 (5)

To quantitatively analyze the relative overhead due to m-
cycles, we define the average wavelength overhead per link
brought to the network by m-cycles as FWOH aveave /Λ= ,
where F is the number of total available wavelengths per link.
To minimize the wavelength overhead, we have to minimize

aveΛ , which is equivalently to minimize the cycle cover
length. Consequently, finding m-cycles can also be formulated
to the least cost cycle cover problem for un-weighted graphs.

3) The number of cycles in the cover: Since a monitor and a
dedicated supervisory channel are assigned for each m-cycle,
this is the number of required monitors and reserved
wavelengths. Thus it is a measurement of the cost for m-cycle
based fault detection and localization. To minimize this cost,
we have to minimize the number of cycles, i.e. || CMIN .

It has been proved that cycle covers exist for each
bridgeless, connected, undirected graph and could be obtained
in running time)(2nο [9]. A polynomial-time algorithm was
also reported for constructing cycle covers [10]. Such works
are focused on the least cost cycle cover problem. They do not
consider the localization degree and cycle numbers. We
previously developed two m-cycle construction algorithms:
heuristic depth-first searching and shortest path Eulerian
matching algorithm, with a balance of all three considerations

[8]. In this paper, we propose a heuristic spanning-tree based
m-cycle construction algorithm for the same purpose, while
improving the performance in terms of localization degree.

III. HEURISTIC SPANNING-TREE BASED CYCLE CONSTRUCTION

A. Preliminary
For a connected, bridgeless, simple graph G(V,E), there

must exist a spanning-tree T. Telink ∉∀ (e is called a
“chord”), if the two endpoints of e are 1n and 2n , then

Tnn ∈21, and there must exist a path Tp ∈ connecting

21,nn . Thus link e and path p form a cycle. We say this cycle
is generated by the chord e. Each chord generates such a
unique cycle. We also have the following cycle cover
existence lemma [9],

Lemma: There exists at least one cycle cover for a
bridgeless graph G(V,E).

Cycles Mccc ,,, 21 L are called independent if their
associative vectors are linearly independent§. H. Walther has
proved the following theorem in [11],

Walther’s Theorem: Let G be a connected graph with L
edges and N vertices. Then there exist L-N+1, but no more
independent elementary cycles**.

Based on the above lemma and theorem, we claim the
following theorem,

Theorem: For a connected, bridgeless, simple graph G with
a given spanning-tree, cycles generated by all chords construct
a cycle cover for G.

Proof: Let G has L edges, N vertices, and the spanning-tree
is T. Then all edges can be partitioned into two sets: N-1 edges
in T and L-N+1 edges not in T.

(1) Each edge not in T is a chord. It generates a cycle and is
covered by this cycle. There are L-N+1 such cycles.

(2) Assume Te ∈∃ * and *e is not covered by any cycles
generated by those chords. Because of the lemma, there must
exist another cycle 0c in which *e appears. The associative

vector of 0c is),,,,,(0
*
0

2
0

1
0

Laaaa LL=0a , where 1*
0 =a and

corresponding to the position of edge *e . For all other cycles,
the components at this position of the associative vectors are
zero, because they do not cover edge *e . Thus cycle 0c is
independent from all other L-N+1 cycles. Consequently, by
adding 0c , graph G has L-N+2 independent cycles. This is a
contradiction to Walther’s theorem. #

§ A group of vectors n21 aaa ,,, L are linearly independent if and only if

01 =∑ =
= iani

i ik holds when 021 ==== nkkk L .
** A cycle is called elementary cycle if no vertex is encountered more than
once when traversing it. Each cycle can be partitioned into elementary cycles.
In this paper, a cycle is an elementary cycle.

In the proof, please note that a cycle cover of graph G is
uniquely determined by the given spanning-tree.

B. Heuristic spanning-tree (HST) based cycle finding
Breadth-first and depth-first spanning-trees (BFST and

DFST) are well known and have been in common use for a
long time. Numerous algorithms to generate such spanning-
trees have been intensively studied [12]. Fig. 1 gives three
spanning-trees for an example graph and m-cycles generated
by corresponding chords. Numbers of cycles in the covers
generated by various spanning-trees are the same for the graph.
By enumerating the faulty candidates for all possible alarm
codes, we find that localization degrees for them are also the
same (I=1). However, the figure shows that the average cover
time (i.e. the average wavelength overhead) per link is smaller
for the cover generated by BFST than by DFST. Furthermore,
the average cover time might be decreased by including nodes
with large degrees in the tree (comparing b and c). This
observation leads us to choose BFST and apply a heuristic rule
of putting the large-degree nodes into the spanning-tree as
early as possible while generating the spanning-tree for
constructing a cycle cover. A heuristic spanning-tree (HST)
based cycle construction algorithm is then given below,

1. Initial: for a graph G, label the degrees of all nodes; set
the spanning-tree T=null; select the node with the
maximum degree as the root. Add all links to T that are
incident to the root.

2. For each node Tni ∈ , update its degree label with the
number of links that are incident to in and connect in
with nodes not in T.

3. Select the node with the maximum degree label in T, add
all links to T that are incident to the selected node and
connect it with nodes not in T.

4. Repeat step 2-3 until all node-degree labels are zero. Now
T is a spanning-tree of G.

5. Given T, construct the cycles for all chords, they form a
cycle cover and are the required m-cycles.

6

5

41

32

(a)

6

5

41

32
(c)

6

5

41

32
(b)

6

5

41

32

(a)

66

55

4411

3322

(a)

6

5

41

32
(c)

66

55

4411

3322
(c)

6

5

41

32
(b)

66

55

4411

3322
(b)

Fig. 1. Spanning-tree and cycle cover
(a) DFST: max cover time = 5/link, average cover time = 2.3/link
(b) BFST (rooted from random nodes): max cover time = 5/link, average

cover time = 1.9/link
(c) BFST (rooted from the node with maximum degree): max cover time =

2/link, average cover time = 1.5/link

IV. EXAMPLES AND EVALUATIONS
The HST based cycle construction algorithm is applied to

four typical example networks (NSFNET, ARPA2, SmallNet,

and Bellcore). The network topologies, spanning-trees, and m-
cycles are shown in Fig. 2. The performances of the algorithm
are evaluated in terms of those metrics described in Section II,
including localization degree, cost, and wavelength overhead.

Table 1 enumerates all possible alarm codes and faulty
candidate sets for NSFNET as an instance. Similar results can
be obtained for other example networks (ARPA2, SmallNet,
and Bellcore) in the way. Table 2 summarizes these results
and compares with the HDFS and SPEM algorithms reported
in [8]. The comparison shows that the HST algorithm has
much better performance than HDFS and SPEM algorithms in
terms of the fault localization degree. Further analyses indicate
that the HST algorithm performs even better in terms of
localization degree for graphs with larger average node
degrees. More specifically, for graphs with average node
degree larger than 3.0, the localization degrees of HST
algorithm are very close to the ideal case. This observation
implies that such fault detection and localization approaches
are suitable for complex networks (with large average node
degree), and thus are scalable.

TABLE 1. Fault localization results: NSFNET - HST

c1 c2 c3 c4 c5 c6 c7 c8
0 0 0 0 0 0 0 0 null

1 10-14
1 9-14
1 1 12-14

1 6-11, 9-11
1 8-9
1 1 1 9-13

1 5-7, 7-8
1 1 2-8

1 4-10
1 1 10-13
1 1 1 6-12
1 1 1 1 1 12-13

1 1-4
1 1 1 3-6
1 1 4-5
1 1 1 5-6

1 1-2
1 1 1 2-3
1 1 1-3

N/A

faulty
candidates

alarm codes

others
The cost of the proposed scheme is measured by the number

of required monitors and reserved wavelengths for m-cycles.
The cost of wavelength is evaluated by aveΛ , maxΛ , and

aveWOH , as described in Section II. Results in Table 2 show
that numbers of both maximum and average reserved
wavelengths for m-cycles obtained by HST algorithm are
larger than HDFS and SPEM. This is the payment for the
benefit in localization degree. Nevertheless, with the DWDM
technology, the number of wavelengths in a single link tends
to become larger. For example, it was reported even in 2001
that 432 wavelengths could be multiplexed into a single fibre
[13]. In current commercial DWDM systems, it is easy to

boost the number of available wavelengths in a fibre to 192 or
above [14]. Even for a small number of available wavelengths
per link, e.g. F=64, the wavelength overheads for HST
algorithm are small (around 3%, see Table 2). Such overheads
have trivial impact on network utilization, if it is not negligible.

The cost of monitors is weighted by the number of monitors
for m-cycles, i.e. the number of m-cycles (denoted as M). For
comparing with the monitor-per-link case, a cost gain is
calculated as LMLG /)(−= where L is the number of links.
The cost gains of HST are compared in Table 2 with HDFS
and SPEM for example networks. Because the monitor-per-
link approach always achieves complete localization, for a fair
comparison, we add some extra monitors for those links that
cannot be fully localized under the HST algorithm to achieve
complete localization. For example, a straightforward method
would be the following one. If there are 2≥K links in a
faulty candidate set, we assign 1−K extra monitors to 1−K
of those K links. More efficient methods might be applied for
achieving complete localization, e.g. using extra m-cycles.
Therefore, HST algorithm still has good cost gains, although
the M values of HST are larger than HDFS and SPEM. Denote
the number of extra monitors as M ′ , the complete localization
can be achieved and the cost gain calculation is revised as,

LMMLG))((′+−=′ (6)

Revised cost gains obtained from the four example networks
are also compared in Table 2. Again, the average node degree
affects the cost gain. For graphs whose average node degree is
3.0 or above, the cost gain for HST is 40–52%. Even for the
worst case, ARPA2, the cost gain is still no less than 20%.
Such results show that under a fair comparison, the cost gains
of HST are better than HDFS and SPEM.

The fault detection scheme in [7], as described in Section I,
placed a monitor per path. In a N-node network, typically each
node has to communicate with all the others, thus the number
of potential paths is)1(−NN . Even with the 50% savings of
monitors (in maximum) by applying the proposed heuristic
optimization algorithm, the number of required monitors is
still)(2NO . Clearly, the m-cycle based approach achieves
significant cost gains in all examples compared to either the
monitor-per-link or monitor-per-path case.

V. CONCLUSION
In mesh AONs, network faults can be detected and located

by decomposing them into monitoring-cycles (m-cycles). We
formulated the m-cycle construction as the cycle cover
problem with certain constraints. A heuristic spanning-tree
(HST) based m-cycle construction algorithm is developed and
evaluated in terms of the localization degree, wavelength
overhead, and cost gain. The proposed HST algorithm is
applied to four typical networks (NSFNET, ARPA2, SmallNet,
and Bellcore) and compared to the previously reported
algorithms, HDFS and SPEM. The comparison results show
that the performance of localization degree for HST algorithm
is better than HDFS and SPEM. Analyses indicate that the

average node degree of a network plays an important role in
the performance of m-cycle based fault detection and
localization approaches. The fact that m-cycle based
approaches can achieve better performance in networks with
larger average node degree implies that such approaches are
suitable for complex networks and thus scalable.

The HST algorithm introduces more monitors than HDFS
and SPEM, however, in a fair comparison of achieving
complete localization, it has better cost gains than HDFS and
SPEM. Additionally, all the three m-cycle construction
algorithms have good cost gains over either monitor-per-link
or monitor-per-path case. Finally, the wavelength overheads
due to m-cycles are negligible in all approaches. Therefore, the
HST algorithm is effective and cost-efficient.

REFERENCES
[1] M. Goyal, K. K. Ramakrishnan, and W.-C. Feng, “Achieving faster

failure detection in OSPF networks,” IEEE ICC’03, 2003
[2] C. Mas and P. Thiran, “A review on fault location methods and their

applications in optical networks,” Optical Network Magazine, vol. 2, No.
4, July/Aug. 2001

[3] Y. Kobayashi, Y. Tada, S. Matsuoka, N. Hirayama, and K. Hagimoto,
“Supervisory systems for all-optical network transmission systems,”
IEEE Globecom’96, pp. 933-937, 1996

[4] M. Mèdard, D. Marquis, and S. R. Chinn, “Attack detection methods for

all-optical networks,” Network and Distributed System Security
Symposium, 1998

[5] Y. Hamazumi, M. Koga, K. Kawai, H. Ichino, K. Sato, “Optical path
fault management in layered networks,” IEEE Globecom’98, vol. 4, pp.
2309-2314, Nov. 1998

[6] C.-S. Li, and R. Ramaswami, “Automatic fault detection, isolation, and
recovery in transparent all-optical networks,” IEEE J. of Lightwave
Tech., vol. 15, No. 10, pp. 1784-1793, Oct. 1997

[7] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H.-A. Choi, “On
monitoring transparent optical networks,” Int’l Conf. on Parallel
Processing Workshops, pp. 217-223, Aug. 2002

[8] H. Zeng, C. Huang, A. Vukovic, and M. Savoie, “Fault Detection and
Path Performance Monitoring in Meshed All-Optical Networks,” IEEE
Globecom 2004 (accepted)

[9] A. Itai and M. Rodeh, “Covering a graph by circuits,” Automata,
languages and programming, Lecture Notes in Computer Sci. 62,
pp.289-299, Berlin: Springer-Verlag, 1978

[10] G. Fan, “Covering graphs by cycles,” SIAM journal on Discrete
Mathematics, vol. 5, No. 4, pp. 491-496, Nov. 1992

[11] H. Walther, “Chapter 1: Flows and tensions on networks,” Ten
applications of graph theory, Boston: D. Reidel Pub. Co. 1984

[12] R. J. Wilson and J. J. Watkins, “Chapter 10: Trees,” Graphs: an
introductory approach, New York: Wiley, 1990

[13] S. V. Kartalopoulos, Fault Detectability in DWDM – Toward Higher
Signal Quality & System Reliability, Piscataway: IEEE Press, 2001

[14] R. Elliott, “Dark fibre pricing analysis Europe 1998-2002,” [Online
document], Nov. 2002, available at http://www.band-
x.com/information/Dark_Fibre_Report-prices_98-02webversion.pdf

TABLE 2. Comparison of localization degree, wavelength overhead, and cost gains

Network
example

Ave. node
degree Algorithm localization

degree
max candidate

set size M G (%) M' M+M' G' (%)

HST 1.105 2 5 1.90 2.97 8 61.9 2 10 52.4
HDFS 1.500 3 3 1.57 2.45 6 71.4 7 13 38.1
SPEM 3.000 7 2 1.24 1.94 4 80.9 15 19 9.5
HST 2.500 6 3 1.60 2.50 5 80.0 15 20 20.0

HDFS 3.130 6 3 1.36 2.13 4 84.0 16 20 20.0
SPEM 5.000 8 2 1.20 1.88 4 84.0 18 22 12.0
HST 1.000 1 6 1.95 3.05 13 40.9 0 13 40.9

HDFS 1.470 3 3 1.55 2.42 8 63.6 7 15 31.8
SPEM 3.670 6 2 1.18 1.84 4 81.8 16 20 9.1
HST 1.077 2 8 1.96 3.06 14 50.0 2 16 42.9

HDFS 2.150 6 3 1.43 2.23 6 78.6 15 21 25.0
SPEM 4.670 8 2 1.14 1.78 5 82.1 21 26 7.1

Bellcore 3.73

SmallNet 4.40

ARPA2 2.38

NSFNET 3.00

aveΛmaxΛ
(%)

aveWOH

8

141

13

12

10

11

2

3

4
5

6

7

9

(a) NSFNET: 14 nodes, 21 links chord
c1: 1 – 2 –3–1
c2: 1 – 4 –5–6–3–1
c3: 4 –10 –13–12–6–5–4
c4: 7 – 8 –2–3–6–5–7
c5: 8 – 9 –13–12–6–3–2–8
c6: 9 –11 –6–12–13–9
c7: 9 –14 –12–13–9
c8: 10–14 –12–13–10

8

141

13

12

10

11

2

3

4
5

6

7

9
8

141

13

12

10

11

2

3

4
5

6

7

9

(a) NSFNET: 14 nodes, 21 links chord
c1: 1 – 2 –3–1
c2: 1 – 4 –5–6–3–1
c3: 4 –10 –13–12–6–5–4
c4: 7 – 8 –2–3–6–5–7
c5: 8 – 9 –13–12–6–3–2–8
c6: 9 –11 –6–12–13–9
c7: 9 –14 –12–13–9
c8: 10–14 –12–13–10

(b) ARPA2: 21 nodes, 25 links

14

1

2

3

4

5

6

7

8 9 10 11

12

13

15 16

17 18

19 20

21

chord
c1: 4 – 5 –6–3–2–1–4
c2: 7 – 8 –1–2–3–6–7
c3: 13–14 –12–11–10–9–8–13
c4: 15–16 –14–12–11–10–9–8

–1–2–3–6–15
c5: 20–21 –18–17–11–12–14

–16–19–20

(b) ARPA2: 21 nodes, 25 links

14

1

2

3

4

5

6

7

8 9 10 11

12

13

15 16

17 18

19 20

21
14

1

2

3

4

5

6

7

8 9 10 11

12

13

15 16

17 18

19 20

21

chord
c1: 4 – 5 –6–3–2–1–4
c2: 7 – 8 –1–2–3–6–7
c3: 13–14 –12–11–10–9–8–13
c4: 15–16 –14–12–11–10–9–8

–1–2–3–6–15
c5: 20–21 –18–17–11–12–14

–16–19–20

(c) SmallNet: 10 nodes, 22 links

1

10

2

3 4

5

6

7

8 9

chord chord
c1: 1 – 2 –7–1 c10: 6 –10 –7–6
c2: 1 – 6 –7–1 c11: 8 – 9 –7–8
c3: 2 – 3 –9–7–2 c12: 8 –10 –7–8
c4: 2 – 8 –7–2 c13: 9 –10 –7–9
c5: 3 – 4 –9–3
c6: 3 – 8 –7–9–3
c7: 4 – 5 –9–4
c8: 5 – 6 –7–9–5
c9: 5 –10 –7–9–5

(c) SmallNet: 10 nodes, 22 links

1

10

2

3 4

5

6

7

8 9

1

10

2

3 4

5

6

7

8 9

chord chord
c1: 1 – 2 –7–1 c10: 6 –10 –7–6
c2: 1 – 6 –7–1 c11: 8 – 9 –7–8
c3: 2 – 3 –9–7–2 c12: 8 –10 –7–8
c4: 2 – 8 –7–2 c13: 9 –10 –7–9
c5: 3 – 4 –9–3
c6: 3 – 8 –7–9–3
c7: 4 – 5 –9–4
c8: 5 – 6 –7–9–5
c9: 5 –10 –7–9–5

(d) Bellcore: 15 nodes, 28 links

1

2

3

4 5

6

7

8

9
10

11

12
13

14

15

chord chord
c1: 1 – 9 –8–2–1 c11: 9 –10 –2–8–9
c2: 1 –10 –2–1 c12: 9 –11 –2–8–9
c3: 3 –13 –2–3 c13: 12–13 –2–8–12
c4: 4 – 5 –6–3–4 c14: 12–14 –6–3–2–8–12
c5: 4 –13 –2–3–4
c6: 6 – 7 –8–2–3–6
c7: 6 –12 –8–2–3–6
c8: 5 –15 –6–5
c9: 7 –12 –8–7
c10: 8 –11 –2–8

(d) Bellcore: 15 nodes, 28 links

1

2

3

4 5

6

7

8

9
10

11

12
13

14

15

chord chord
c1: 1 – 9 –8–2–1 c11: 9 –10 –2–8–9
c2: 1 –10 –2–1 c12: 9 –11 –2–8–9
c3: 3 –13 –2–3 c13: 12–13 –2–8–12
c4: 4 – 5 –6–3–4 c14: 12–14 –6–3–2–8–12
c5: 4 –13 –2–3–4
c6: 6 – 7 –8–2–3–6
c7: 6 –12 –8–2–3–6
c8: 5 –15 –6–5
c9: 7 –12 –8–7
c10: 8 –11 –2–8

Fig. 2. m-cycles obtained by HST for (a) NSFNET; (b) ARPA2; (c) SmallNet; (d) Bellcore (links in spanning-trees are in dark)

