public class NaiveBayesMultinomialText extends AbstractClassifier implements UpdateableClassifier, WeightedInstancesHandler
-W Use word frequencies instead of binary bag of words.
-P <# instances> How often to prune the dictionary of low frequency words (default = 0, i.e. don't prune)
-M <double> Minimum word frequency. Words with less than this frequence are ignored. If periodic pruning is turned on then this is also used to determine which words to remove from the dictionary (default = 3).
-normalize Normalize document length (use in conjunction with -norm and -lnorm)
-norm <num> Specify the norm that each instance must have (default 1.0)
-lnorm <num> Specify L-norm to use (default 2.0)
-lowercase Convert all tokens to lowercase before adding to the dictionary.
-stoplist Ignore words that are in the stoplist.
-stopwords <file> A file containing stopwords to override the default ones. Using this option automatically sets the flag ('-stoplist') to use the stoplist if the file exists. Format: one stopword per line, lines starting with '#' are interpreted as comments and ignored.
-tokenizer <spec> The tokenizing algorihtm (classname plus parameters) to use. (default: weka.core.tokenizers.WordTokenizer)
-stemmer <spec> The stemmering algorihtm (classname plus parameters) to use.
Constructor and Description |
---|
NaiveBayesMultinomialText() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
Generates the classifier.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
double |
getLNorm()
Get the L Norm used.
|
boolean |
getLowercaseTokens()
Get whether to convert all tokens to lowercase
|
double |
getMinWordFrequency()
Get the minimum word frequency.
|
double |
getNorm()
Get the instance's Norm.
|
boolean |
getNormalizeDocLength()
Get whether to normalize the length of each document
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
int |
getPeriodicPruning()
Get how often to prune the dictionary
|
String |
getRevision()
Returns the revision string.
|
Stemmer |
getStemmer()
Returns the current stemming algorithm, null if none is used.
|
File |
getStopwords()
returns the file used for obtaining the stopwords, if the file represents
a directory then the default ones are used.
|
Tokenizer |
getTokenizer()
Returns the current tokenizer algorithm.
|
boolean |
getUseStopList()
Get whether to ignore all words that are on the stoplist.
|
boolean |
getUseWordFrequencies()
Get whether to use word frequencies rather than binary
bag of words representation.
|
String |
globalInfo()
Returns a string describing classifier
|
Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
String |
LNormTipText()
Returns the tip text for this property
|
String |
lowercaseTokensTipText()
Returns the tip text for this property
|
static void |
main(String[] args)
Main method for testing this class.
|
String |
minWordFrequencyTipText()
Returns the tip text for this property
|
String |
normalizeDocLengthTipText()
Returns the tip text for this property
|
String |
normTipText()
Returns the tip text for this property
|
String |
periodicPruningTipText()
Returns the tip text for this property
|
void |
reset()
Reset the classifier.
|
void |
setLNorm(double newLNorm)
Set the L-norm to used
|
void |
setLowercaseTokens(boolean l)
Set whether to convert all tokens to lowercase
|
void |
setMinWordFrequency(double minFreq)
Set the minimum word frequency.
|
void |
setNorm(double newNorm)
Set the norm of the instances
|
void |
setNormalizeDocLength(boolean norm)
Set whether to normalize the length of each document
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setPeriodicPruning(int p)
Set how often to prune the dictionary
|
void |
setStemmer(Stemmer value)
the stemming algorithm to use, null means no stemming at all (i.e., the
NullStemmer is used).
|
void |
setStopwords(File value)
sets the file containing the stopwords, null or a directory unset the
stopwords.
|
void |
setTokenizer(Tokenizer value)
the tokenizer algorithm to use.
|
void |
setUseStopList(boolean u)
Set whether to ignore all words that are on the stoplist.
|
void |
setUseWordFrequencies(boolean u)
Set whether to use word frequencies rather than binary
bag of words representation.
|
String |
stemmerTipText()
Returns the tip text for this property.
|
String |
stopwordsTipText()
Returns the tip text for this property.
|
String |
tokenizerTipText()
Returns the tip text for this property.
|
String |
toString()
Returns a textual description of this classifier.
|
void |
updateClassifier(Instance instance)
Updates the classifier with the given instance.
|
String |
useStopListTipText()
Returns the tip text for this property
|
String |
useWordFrequenciesTipText()
Returns the tip text for this property
|
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebug
public String globalInfo()
public Capabilities getCapabilities()
getCapabilities
in interface Classifier
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class AbstractClassifier
Capabilities
public void buildClassifier(Instances data) throws Exception
buildClassifier
in interface Classifier
instances
- set of instances serving as training dataException
- if the classifier has not been generated successfullypublic void updateClassifier(Instance instance) throws Exception
updateClassifier
in interface UpdateableClassifier
instance
- the new training instance to include in the modelException
- if the instance could not be incorporated in
the model.public double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance
in interface Classifier
distributionForInstance
in class AbstractClassifier
instance
- the instance to be classifiedException
- if there is a problem generating the predictionpublic void reset()
public void setStemmer(Stemmer value)
value
- the configured stemming algorithm, or nullNullStemmer
public Stemmer getStemmer()
public String stemmerTipText()
public void setTokenizer(Tokenizer value)
value
- the configured tokenizing algorithmpublic Tokenizer getTokenizer()
public String tokenizerTipText()
public String useWordFrequenciesTipText()
public void setUseWordFrequencies(boolean u)
u
- true if word frequencies are to be used.public boolean getUseWordFrequencies()
u
- true if word frequencies are to be used.public String lowercaseTokensTipText()
public void setLowercaseTokens(boolean l)
l
- true if all tokens are to be converted to
lowercasepublic boolean getLowercaseTokens()
public String periodicPruningTipText()
public void setPeriodicPruning(int p)
p
- how often to prunepublic int getPeriodicPruning()
public String minWordFrequencyTipText()
public void setMinWordFrequency(double minFreq)
minFreq
- the minimum word frequency to usepublic double getMinWordFrequency()
return
- the minimum word frequency to usepublic String normalizeDocLengthTipText()
public void setNormalizeDocLength(boolean norm)
norm
- true if document lengths is to be normalizedpublic boolean getNormalizeDocLength()
public String normTipText()
public double getNorm()
public void setNorm(double newNorm)
newNorm
- the norm to wich the instances must be setpublic String LNormTipText()
public double getLNorm()
public void setLNorm(double newLNorm)
newLNorm
- the L-normpublic String useStopListTipText()
public void setUseStopList(boolean u)
u
- true to ignore all words on the stoplist.public boolean getUseStopList()
public void setStopwords(File value)
value
- the file containing the stopwordspublic File getStopwords()
public String stopwordsTipText()
public Enumeration<Option> listOptions()
listOptions
in interface OptionHandler
listOptions
in class AbstractClassifier
public void setOptions(String[] options) throws Exception
-W Use word frequencies instead of binary bag of words.
-P <# instances> How often to prune the dictionary of low frequency words (default = 0, i.e. don't prune)
-M <double> Minimum word frequency. Words with less than this frequence are ignored. If periodic pruning is turned on then this is also used to determine which words to remove from the dictionary (default = 3).
-normalize Normalize document length (use in conjunction with -norm and -lnorm)
-norm <num> Specify the norm that each instance must have (default 1.0)
-lnorm <num> Specify L-norm to use (default 2.0)
-lowercase Convert all tokens to lowercase before adding to the dictionary.
-stoplist Ignore words that are in the stoplist.
-stopwords <file> A file containing stopwords to override the default ones. Using this option automatically sets the flag ('-stoplist') to use the stoplist if the file exists. Format: one stopword per line, lines starting with '#' are interpreted as comments and ignored.
-tokenizer <spec> The tokenizing algorihtm (classname plus parameters) to use. (default: weka.core.tokenizers.WordTokenizer)
-stemmer <spec> The stemmering algorihtm (classname plus parameters) to use.
setOptions
in interface OptionHandler
setOptions
in class AbstractClassifier
options
- the list of options as an array of stringsException
- if an option is not supportedpublic String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class AbstractClassifier
public String toString()
public String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class AbstractClassifier
public static void main(String[] args)
args
- the optionsCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.