public class AdaBoostM1 extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, Sourcable, TechnicalInformationHandler
@inproceedings{Freund1996,
address = {San Francisco},
author = {Yoav Freund and Robert E. Schapire},
booktitle = {Thirteenth International Conference on Machine Learning},
pages = {148-156},
publisher = {Morgan Kaufmann},
title = {Experiments with a new boosting algorithm},
year = {1996}
}
Valid options are:
-P <num> Percentage of weight mass to base training on. (default 100, reduce to around 90 speed up)
-Q Use resampling for boosting.
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
| Constructor and Description |
|---|
AdaBoostM1()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Boosting method.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
String[] |
getOptions()
Gets the current settings of the Classifier.
|
String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getUseResampling()
Get whether resampling is turned on
|
int |
getWeightThreshold()
Get the degree of weight thresholding
|
String |
globalInfo()
Returns a string describing classifier
|
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv)
Main method for testing this class.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setUseResampling(boolean r)
Set resampling mode
|
void |
setWeightThreshold(int threshold)
Set weight threshold
|
String |
toSource(String className)
Returns the boosted model as Java source code.
|
String |
toString()
Returns description of the boosted classifier.
|
String |
useResamplingTipText()
Returns the tip text for this property
|
String |
weightThresholdTipText()
Returns the tip text for this property
|
getSeed, seedTipText, setSeedgetNumIterations, numIterationsTipText, setNumIterationsclassifierTipText, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebugpublic String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class RandomizableIteratedSingleClassifierEnhancerpublic void setOptions(String[] options) throws Exception
-P <num> Percentage of weight mass to base training on. (default 100, reduce to around 90 speed up)
-Q Use resampling for boosting.
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
setOptions in interface OptionHandlersetOptions in class RandomizableIteratedSingleClassifierEnhanceroptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface OptionHandlergetOptions in class RandomizableIteratedSingleClassifierEnhancerpublic String weightThresholdTipText()
public void setWeightThreshold(int threshold)
threshold - the percentage of weight mass used for trainingpublic int getWeightThreshold()
public String useResamplingTipText()
public void setUseResampling(boolean r)
r - true if resampling should be donepublic boolean getUseResampling()
public Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class SingleClassifierEnhancerCapabilitiespublic void buildClassifier(Instances data) throws Exception
buildClassifier in interface ClassifierbuildClassifier in class IteratedSingleClassifierEnhancerdata - the training data to be used for generating the
boosted classifier.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance in interface ClassifierdistributionForInstance in class AbstractClassifierinstance - the instance to be classifiedException - if instance could not be classified
successfullypublic String toSource(String className) throws Exception
public String toString()
public String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(String[] argv)
argv - the optionsCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.