public class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer implements OptionHandler, Drawable
-M Minimize expected misclassification cost. Default is to reweight training instances according to costs per class
-C <cost file name> File name of a cost matrix to use. If this is not supplied, a cost matrix will be loaded on demand. The name of the on-demand file is the relation name of the training data plus ".cost", and the path to the on-demand file is specified with the -N option.
-N <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).
-cost-matrix <matrix> The cost matrix in Matlab single line format.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
Modifier and Type | Field and Description |
---|---|
static int |
MATRIX_ON_DEMAND
load cost matrix on demand
|
static int |
MATRIX_SUPPLIED
use explicit cost matrix
|
static Tag[] |
TAGS_MATRIX_SOURCE
Specify possible sources of the cost matrix
|
BayesNet, Newick, NOT_DRAWABLE, TREE
Constructor and Description |
---|
CostSensitiveClassifier()
Default constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
Builds the model of the base learner.
|
String |
costMatrixSourceTipText() |
String |
costMatrixTipText() |
double[] |
distributionForInstance(Instance instance)
Returns class probabilities.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
CostMatrix |
getCostMatrix()
Gets the misclassification cost matrix.
|
SelectedTag |
getCostMatrixSource()
Gets the source location method of the cost matrix.
|
boolean |
getMinimizeExpectedCost()
Gets the value of MinimizeExpectedCost.
|
File |
getOnDemandDirectory()
Returns the directory that will be searched for cost files when
loading on demand.
|
String[] |
getOptions()
Gets the current settings of the Classifier.
|
String |
getRevision()
Returns the revision string.
|
String |
globalInfo() |
String |
graph()
Returns graph describing the classifier (if possible).
|
int |
graphType()
Returns the type of graph this classifier
represents.
|
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv)
Main method for testing this class.
|
String |
minimizeExpectedCostTipText() |
String |
onDemandDirectoryTipText() |
void |
setCostMatrix(CostMatrix newCostMatrix)
Sets the misclassification cost matrix.
|
void |
setCostMatrixSource(SelectedTag newMethod)
Sets the source location of the cost matrix.
|
void |
setMinimizeExpectedCost(boolean newMinimizeExpectedCost)
Set the value of MinimizeExpectedCost.
|
void |
setOnDemandDirectory(File newDir)
Sets the directory that will be searched for cost files when
loading on demand.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
String |
toString()
Output a representation of this classifier
|
getSeed, seedTipText, setSeed
classifierTipText, getClassifier, setClassifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebug
public static final int MATRIX_ON_DEMAND
public static final int MATRIX_SUPPLIED
public static final Tag[] TAGS_MATRIX_SOURCE
public Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableSingleClassifierEnhancer
public void setOptions(String[] options) throws Exception
-M Minimize expected misclassification cost. Default is to reweight training instances according to costs per class
-C <cost file name> File name of a cost matrix to use. If this is not supplied, a cost matrix will be loaded on demand. The name of the on-demand file is the relation name of the training data plus ".cost", and the path to the on-demand file is specified with the -N option.
-N <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).
-cost-matrix <matrix> The cost matrix in Matlab single line format.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class RandomizableSingleClassifierEnhancer
options
- the list of options as an array of stringsException
- if an option is not supportedpublic String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableSingleClassifierEnhancer
public String globalInfo()
public String costMatrixSourceTipText()
public SelectedTag getCostMatrixSource()
public void setCostMatrixSource(SelectedTag newMethod)
newMethod
- the cost matrix location method.public String onDemandDirectoryTipText()
public File getOnDemandDirectory()
public void setOnDemandDirectory(File newDir)
newDir
- The cost file search directory.public String minimizeExpectedCostTipText()
public boolean getMinimizeExpectedCost()
public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost)
newMinimizeExpectedCost
- Value to assign to MinimizeExpectedCost.public String costMatrixTipText()
public CostMatrix getCostMatrix()
public void setCostMatrix(CostMatrix newCostMatrix)
newCostMatrix
- the cost matrixpublic Capabilities getCapabilities()
getCapabilities
in interface Classifier
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class SingleClassifierEnhancer
Capabilities
public void buildClassifier(Instances data) throws Exception
buildClassifier
in interface Classifier
data
- the training dataException
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance
in interface Classifier
distributionForInstance
in class AbstractClassifier
instance
- the instance to be classifiedException
- if instance could not be classified
successfullypublic int graphType()
public String toString()
public String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class AbstractClassifier
public static void main(String[] argv)
argv
- should contain the following arguments:
-t training file [-T test file] [-c class index]Copyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.