public class RandomCommittee extends RandomizableParallelIteratedSingleClassifierEnhancer implements WeightedInstancesHandler
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.RandomTree)
Options specific to classifier weka.classifiers.trees.RandomTree:
-K <number of attributes> Number of attributes to randomly investigate (<1 = int(log(#attributes)+1)).
-M <minimum number of instances> Set minimum number of instances per leaf.
-S <num> Seed for random number generator. (default 1)
-depth <num> The maximum depth of the tree, 0 for unlimited. (default 0)
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
| Constructor and Description |
|---|
RandomCommittee()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Builds the committee of randomizable classifiers.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
String |
getRevision()
Returns the revision string.
|
String |
globalInfo()
Returns a string describing classifier
|
static void |
main(String[] argv)
Main method for testing this class.
|
String |
toString()
Returns description of the committee.
|
getOptions, getSeed, listOptions, seedTipText, setOptions, setSeedgetNumExecutionSlots, numExecutionSlotsTipText, setNumExecutionSlotsgetNumIterations, numIterationsTipText, setNumIterationsclassifierTipText, getCapabilities, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebugpublic String globalInfo()
public void buildClassifier(Instances data) throws Exception
buildClassifier in interface ClassifierbuildClassifier in class ParallelIteratedSingleClassifierEnhancerdata - the training data to be used for generating the
bagged classifier.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance in interface ClassifierdistributionForInstance in class AbstractClassifierinstance - the instance to be classifiedException - if distribution can't be computed successfullypublic String toString()
public String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(String[] argv)
argv - the optionsCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.