public class RandomTree extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, Randomizable, Drawable
-K <number of attributes> Number of attributes to randomly investigate (<0 = int(log_2(#attributes)+1)).
-M <minimum number of instances> Set minimum number of instances per leaf.
-S <num> Seed for random number generator. (default 1)
-depth <num> The maximum depth of the tree, 0 for unlimited. (default 0)
-N <num> Number of folds for backfitting (default 0, no backfitting).
-U Allow unclassified instances.
-D If set, classifier is run in debug mode and may output additional info to the console
BayesNet, Newick, NOT_DRAWABLE, TREE| Constructor and Description |
|---|
RandomTree() |
| Modifier and Type | Method and Description |
|---|---|
String |
allowUnclassifiedInstancesTipText()
Returns the tip text for this property
|
void |
backfitData(Instances data)
Backfits the given data into the tree.
|
void |
buildClassifier(Instances data)
Builds classifier.
|
double[] |
distributionForInstance(Instance instance)
Computes class distribution of an instance using the decision tree.
|
boolean |
getAllowUnclassifiedInstances()
Get the value of NumFolds.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getKValue()
Get the value of K.
|
int |
getMaxDepth()
Get the maximum depth of trh tree, 0 for unlimited.
|
double |
getMinNum()
Get the value of MinNum.
|
int |
getNumFolds()
Get the value of NumFolds.
|
String[] |
getOptions()
Gets options from this classifier.
|
String |
getRevision()
Returns the revision string.
|
int |
getSeed()
Gets the seed for the random number generations
|
String |
globalInfo()
Returns a string describing classifier
|
String |
graph()
Returns graph describing the tree.
|
int |
graphType()
Returns the type of graph this classifier represents.
|
String |
KValueTipText()
Returns the tip text for this property
|
Enumeration |
listOptions()
Lists the command-line options for this classifier.
|
static void |
main(String[] argv)
Main method for this class.
|
String |
maxDepthTipText()
Returns the tip text for this property
|
String |
minNumTipText()
Returns the tip text for this property
|
String |
numFoldsTipText()
Returns the tip text for this property
|
int |
numNodes()
Computes size of the tree.
|
String |
seedTipText()
Returns the tip text for this property
|
void |
setAllowUnclassifiedInstances(boolean newAllowUnclassifiedInstances)
Set the value of AllowUnclassifiedInstances.
|
void |
setKValue(int k)
Set the value of K.
|
void |
setMaxDepth(int value)
Set the maximum depth of the tree, 0 for unlimited.
|
void |
setMinNum(double newMinNum)
Set the value of MinNum.
|
void |
setNumFolds(int newNumFolds)
Set the value of NumFolds.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setSeed(int seed)
Set the seed for random number generation.
|
String |
toGraph()
Outputs the decision tree as a graph
|
int |
toGraph(StringBuffer text,
int num)
Outputs one node for graph.
|
String |
toString()
Outputs the decision tree.
|
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebugpublic String globalInfo()
public String minNumTipText()
public double getMinNum()
public void setMinNum(double newMinNum)
newMinNum - Value to assign to MinNum.public String KValueTipText()
public int getKValue()
public void setKValue(int k)
k - Value to assign to K.public String seedTipText()
public void setSeed(int seed)
setSeed in interface Randomizableseed - the seedpublic int getSeed()
getSeed in interface Randomizablepublic String maxDepthTipText()
public int getMaxDepth()
public String numFoldsTipText()
public int getNumFolds()
public void setNumFolds(int newNumFolds)
newNumFolds - Value to assign to NumFolds.public String allowUnclassifiedInstancesTipText()
public boolean getAllowUnclassifiedInstances()
public void setAllowUnclassifiedInstances(boolean newAllowUnclassifiedInstances)
newAllowUnclassifiedInstances - Value to assign to AllowUnclassifiedInstances.public void setMaxDepth(int value)
value - the maximum depth.public Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class AbstractClassifierpublic String[] getOptions()
getOptions in interface OptionHandlergetOptions in class AbstractClassifierpublic void setOptions(String[] options) throws Exception
-K <number of attributes> Number of attributes to randomly investigate (<0 = int(log_2(#attributes)+1)).
-M <minimum number of instances> Set minimum number of instances per leaf.
-S <num> Seed for random number generator. (default 1)
-depth <num> The maximum depth of the tree, 0 for unlimited. (default 0)
-N <num> Number of folds for backfitting (default 0, no backfitting).
-U Allow unclassified instances.
-D If set, classifier is run in debug mode and may output additional info to the console
setOptions in interface OptionHandlersetOptions in class AbstractClassifieroptions - the list of options as an array of stringsException - if an option is not supportedpublic Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClassifierCapabilitiespublic void buildClassifier(Instances data) throws Exception
buildClassifier in interface Classifierdata - the data to train withException - if something goes wrong or the data doesn't fitpublic void backfitData(Instances data) throws Exception
Exceptionpublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance in interface ClassifierdistributionForInstance in class AbstractClassifierinstance - the instance to compute the distribution forException - if computation failspublic String toGraph()
public int toGraph(StringBuffer text, int num) throws Exception
text - the buffer to append the output tonum - unique node idException - if generation failspublic String toString()
public int numNodes()
public String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(String[] argv)
argv - the commandline parametersCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.