EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software |
EIDORS
(mirror) Main Documentation Tutorials − Image Reconst − Data Structures − Applications − FEM Modelling − GREIT − Old tutorials − Workshop Download Contrib Data GREIT Browse Docs Browse SVN News Mailing list (archive) FAQ Developer
|
EIDORS image reconstructionsEIDORS data structures: the inv_modelThe EIDORS inv_model describes all the parameters as part of image reconstruction% Basic Image reconstruction % $Id: tutorial110a.m 4839 2015-03-30 07:44:50Z aadler $ % Load some data load iirc_data_2006 % grey background calc_colours('greylev',-.1); % Get a 2D image reconstruction model imdl= mk_common_model('c2c'); % Set stimulation patterns. Use meas_current % Stimulation of [1,0] (not [0,1]) is needed for this device (IIRC) imdl.fwd_model.stimulation = mk_stim_patterns(16,1,[1,0],[0,1],{'meas_current'},1); % Remove meas_select field because all 16x16 patterns are used imdl.fwd_model = rmfield( imdl.fwd_model, 'meas_select'); vi= real(v_rotate(:,9))/1e4; vh= real(v_reference)/1e4; for idx= 1:3 if idx==1 imdl.hyperparameter.value= .03; elseif idx==2 imdl.hyperparameter.value= .05; elseif idx==3 imdl.hyperparameter.value= .10; end img= inv_solve(imdl, vh, vi); img.calc_colours.greylev = -.3; subplot(2,3,idx); show_slices(img); subplot(2,3,idx+3); z=calc_slices(img); c=calc_colours(z,img); h=mesh(z,c); view(-11,44); set(h,'CDataMapping','Direct'); set(gca,{'XLim','YLim','ZLim','XTickLabel','YTickLabel'}, ... {[1 64],[1 64],[-3.3,0.5],[],[]}) end print_convert tutorial110a.png Figure: Image reconstructions shown as images (top) or meshes (bottom) for different hyperparameter values. |
Last Modified: $Date: 2017-02-28 13:12:08 -0500 (Tue, 28 Feb 2017) $ by $Author: aadler $