EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software |
EIDORS
(mirror) Main Documentation Tutorials − Image Reconst − Data Structures − Applications − FEM Modelling − GREIT − Old tutorials − Workshop Download Contrib Data GREIT Browse Docs Browse SVN News Mailing list (archive) FAQ Developer
|
GREIT Reconstruction For different Model GeometriesReconstructing on a correct model domain is important for acurate image reconstructions. Here we consider lung shapes images in an ellipse, and their reconstruction onto shapes from a circle to an ellipse.Simulation model% $Id: mk_GREIT_mat_ellip01.m 2799 2011-07-14 23:41:48Z bgrychtol $ n_elecs = 16; stim = mk_stim_patterns(n_elecs,1,[0,1],[0,1],{'no_meas_current'}, 1); extra={'lungs','solid lungs = sphere(0.9,0.1,1;0.6) or sphere(-0.9,0.1,1;0.6);'}; [fmdl,midx] = ng_mk_ellip_models([2, 2,1.4,0.2] ,[n_elecs,1],[0.1], extra); fmdl.stimulation = stim; img = mk_image(fmdl,1); % Homogeneous background vh = fwd_solve(img); img.elem_data(midx{2}) = 0.5; % Lung regions vi = fwd_solve(img); show_fem(img); view(0,70); print_convert mk_GREIT_mat_ellip01a.png '-density 75' Figure: Simulation of data on an elliptical model with lung shaped contrasting regions Calculate GREIT reconstruction matrices for various model shapes% $Id: mk_GREIT_mat_ellip02.m 3350 2012-07-01 21:35:17Z bgrychtol $ opt.imgsz = [32 32]; opt.distr = 3; % non-random, uniform opt.Nsim = 1000; opt.target_size = 0.05; % Target size (frac of medium) opt.noise_figure = 0.5; % Recommended NF=0.5; k=1; for el = linspace(1,2.4,4); fmdl = ng_mk_ellip_models([2, 2,el,0.2] ,[n_elecs,1],[0.1]); fmdl.stimulation = stim; fmdl = mdl_normalize(fmdl, 0); img = mk_image(fmdl,1); imdl(k) = mk_GREIT_model(img, 0.25, [], opt); subplot(1,4,k); show_fem(fmdl); view(0,70); k=k+1; end print_convert mk_GREIT_mat_ellip02.png '-density 180' Figure: Four different elliptic reconstruction models with different elliptical parameters densities. The second from the left fits closest with the simulation data. Reconstruct Images on each model% $Id: mk_GREIT_mat_ellip03.m 2480 2011-03-03 20:43:07Z aadler $ for k=1:4 rimg = inv_solve(imdl(k),vh,vi); %Reconstruct subplot(1,4,k) show_fem(rimg); axis square; end print_convert mk_GREIT_matrix03.png '-density 180' Figure: Four different elliptic reconstruction models with different densities. |
Last Modified: $Date: 2017-02-28 13:12:08 -0500 (Tue, 28 Feb 2017) $ by $Author: aadler $