Eidors-logo    

EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software

EIDORS (mirror)
Main
Documentation
Tutorials
− Image Reconst
− Data Structures
− Applications
− FEM Modelling
− GREIT
− Old tutorials
Workshop
Download
Contrib Data
GREIT
Browse Docs
Browse SVN

News
Mailing list
(archive)
FAQ
Developer
                       

 

Hosted by
SourceForge.net Logo

 

Simulation of voltages over time due to transient current inputs

EIDORS uses frequency-domain forward modelling (i.e. the model is solved for stimulus at a given frequency f=2πω). To use EIDORS to make time-domain simulations, we need to use Fourier synthesis.
%Create 2D model
ball1 = 'solid ball = cylinder(0.1,0.4,0;0.1,0.4,1;0.3) and orthobrick(-1,-1,0;1,1,0.05) -maxh=0.1;';
box1  = 'solid box = orthobrick(-0.6,-0.6,0; 0.1,-0.1,0.05) -maxh=0.1;';
fmdl= ng_mk_cyl_models(0,[8],[0.2,0,0.05],{'ball','box',[ball1,box1]}); 
fmdl.stimulation = stim_meas_list([1,5,2,3],8,.01,1);
inclusion = vertcat( fmdl.mat_idx{2:3} );
%Conductivity and permittivity parameters
img = mk_image( fmdl, 1);

img.elem_data(inclusion) = .01;
img.fwd_solve.get_all_meas=1; %Get all measurements

subplot(221); show_fem(img);
print_convert transients01a.png


Figure: Regions of coductivity and permittivity in circular 2D model
img.calc_colours.component = 'real'; % display real component of current

for i=1:2
   if i==1; cplx= .01;
   else   ; cplx= .01 - pi*2i *100; end
   img.elem_data( inclusion ) = cplx;

   subplot(2,2,i); show_current(img); axis off
end
print_convert transients02a.png

red =  real(img.elem_data); % in-phase
ied = (imag(img.elem_data)~=0)*.01; % out-of-phase


Figure: Patterns of current flow at (left) f=0 and (right) f=100.
tlim =  0.05; tpts = 100;
fmax = 1/tlim*(tpts/2);
tax = linspace(0,tlim,tpts); 
puls= tax> 0.4*tlim & tax<0.6*tlim;
fpul = fftshift(fft(puls));
fax = linspace(0,fmax,tpts+1); fax(end)=[];
fax = fftshift(fax);
fax(fax>0.5*fmax) = fax(fax>0.5*fmax) - fmax;
subplot(221); plot(tax, puls); ylim([-.1,1.1]); box off;
subplot(222); plot(fax, real(fpul),'.');        box off;

clear vn; for i=fliplr(1:tpts)
   img.elem_data= red + ied*fax(i)*2j*pi;
   vv = fwd_solve(img);
   vn(:,i) = fpul(i)*vv.volt;
end
print_convert transients03a.png


Figure: Left: Pulsatile current input vs time (s). Right: Fourier series of input waveform.
% Inverse Transform
vt = ifft(ifftshift(vn,2),[],2);
if norm(real(vt(:))) < 1e-10*norm(imag(vt(:))); error('ifft'); end

subplot(211); 

imgn = rmfield(img,'elem_data');
imgn.node_data = real(vt);
imgn.show_slices.img_cols = 10;
imgn.get_img_data.frame_select = round(0.3*tpts):round(0.79*tpts);
show_slices( imgn);

print_convert transients04a.png


Figure: Images of voltage as a function of time
rimg = calc_slices(imgn);

slice = rimg(:,32,:);
image(calc_colours(reshape(slice,64,[]), imgn))

print_convert transients05a.png



Figure: Slice through the image centre as a function of time

Last Modified: $Date: 2017-04-28 13:02:29 -0400 (Fri, 28 Apr 2017) $ by $Author: aadler $