Eidors-logo    

EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software

EIDORS (mirror)
Main
Documentation
Tutorials
− Image Reconst
− Data Structures
− Applications
− FEM Modelling
− GREIT
− Old tutorials
Workshop
Download
Contrib Data
GREIT
Browse Docs
Browse SVN

News
Mailing list
(archive)
FAQ
Developer
                       

 

Hosted by
SourceForge.net Logo

 

Introduction to dual models

Dual model systems use two models of the underlying system:
  • a fine (high density) FEM, on which to perform the forward model (calculate measurements from parameters), and
  • a coarse (lower density) FEM, on which to perform the inverse problem (reconstructing image parameters from measurements)

Figure: Schematic of a dual model based inverse problem

Simulated data

First, simulate some data, based on a 576 element mesh
% Simulate data $Id: dual_model01.m 2162 2010-04-04 20:49:45Z aadler $
imdl= mk_common_model('c2c2',16);
img= mk_image(imdl);
vh=fwd_solve(img);
idx=[365,328,292,259,227,198,170,145,121];
img.elem_data([idx,idx+1,101,81])=1.1;
vi=fwd_solve(img);

show_fem(img);
print_convert('dual_model01a.png', '-density 60');


Figure: Simulation data

Simple Example: Dual model using multi-element parameters

Next, we compare two coarse meshes
  1. A 64 element mesh where the fine==coarse mesh. There are 64 conductivity parameters to solve
  2. A 64 element mesh where 4 inner elements have the same conductivity. Thus there are 64-(4-1)=61 conductivity parameters to solve
  3. A 64 element mesh where 9 elements in an inner pie slice have the same conductivity. Thus there are 64-(9-1)=56 conductivity parameters to solve
% Simulate data $Id: dual_model02.m 4839 2015-03-30 07:44:50Z aadler $

% create base model
mdl_base=mk_common_model('a2c0',16);
mdl_base.RtR_prior = @prior_noser;
mdl_base.hyperparameter.value = .2;

elems= mdl_base.fwd_model.elems;
nodes= mdl_base.fwd_model.nodes;
e= size(elems,1);


for model = 1:3
   if model==1
% Model 1: coarse==fine. each elem has a parameter
      params= 1:e; 
   elseif model==2
% Model 2: coarse model, inner circle has one parameter
      params= [1,1,1,1, 2:e-3];
   elseif model==3
% Model 3: coarse model, top left slice has one parameter
      params= 1:e;
      params([4,8,15:16,23:24,34:36])= 0;
      [jnk1,jnk2,params]= unique(params);
   end

% Create inverse_model
   imdl(model)= mdl_base;
   imdl(model).fwd_model.coarse2fine = sparse(1:e,params,1,e,max(params));

   subplot(2,3, model)
   show_fem(imdl(model).fwd_model);

% Show parameter numbers
   numeros= reshape(sprintf('%2d',params),2,e)';
   xc=mean(reshape(nodes(elems,1),e,3),2);
   yc=mean(reshape(nodes(elems,2),e,3),2);
   text(xc,yc,numeros,'FontSize',8, ...
            'HorizontalAlignment','center');

end

print_convert dual_model02a.png


Figure: Left "Fine" mesh (64 parameters) Middle Coarse mesh (61 parameters) Right Coarse mesh (56 parameters)

Coarse to Fine Mapping

If we consider a smaller model, where
   % fine_param_1 == coarse_param_1
   % fine_param_2 == coarse_param_2
   % fine_param_3 == coarse_param_3
   % fine_param_4 == coarse_param_3
Then the mapping from coarse to fine would be
   [ 1 0 0 ] [ coarse_param_1 ]   [ fine_param_1 ]
   [ 0 1 0 ] [ coarse_param_2 ] = [ fine_param_2 ]
   [ 0 0 1 ] [ coarse_param_3 ]   [ fine_param_3 ]
   [ 0 0 1 ]                      [ fine_param_4 ]

Image Reconstructions

% Simulate data $Id: dual_model03.m 2162 2010-04-04 20:49:45Z aadler $

for model= 1:3
   img= inv_solve(imdl(model), vh, vi);
   subplot(2,3,model)
   show_fem(img);
end

print_convert dual_model03a.png;


Figure: Reconstructed images. Left "Fine" mesh (64 parameters) Middle Coarse mesh (61 parameters) Right Coarse mesh (56 parameters)

Example #2: Fine and Coarse meshes

We consider a coarse mesh of 64 elements, and fine meshes of 64 (same as coarse), 256, and 576 elements
% create fine meshes $Id: dual_model04.m 4839 2015-03-30 07:44:50Z aadler $

% create base model
mdl_coarse=mk_common_model('a2c0',16);

for model = 1:3
   if model==1
% Model 1: 64 elements
      mdl_str= 'a2c0';
   elseif model==2
% Model 2: 256 elements
      mdl_str= 'b2c0';
   elseif model==3
% Model 3: 576 elements
      mdl_str= 'c2c0';
   end

   mdl_fine= mk_common_model(mdl_str,16);
   mdl_fine.fwd_model.mk_coarse_fine_mapping.n_interp= 150;
   mdl_fine.RtR_prior = @prior_noser;
   mdl_fine.hyperparameter.value = .2;

   imdl(model)= mdl_fine;
   imdl(model).fwd_model.coarse2fine = ...
       mk_coarse_fine_mapping( mdl_fine.fwd_model, mdl_coarse.fwd_model);

   subplot(2,3, model)
   show_fem(mdl_fine.fwd_model);
end

print_convert dual_model04a.png


Figure: Reconstructed images. Left "Fine" mesh (64 elements) Middle Fine mesh (256 elements) Right Fine mesh (576 elements)
Reconstruct images, and then image onto the coarse model and the fine model.
% Simulate data $Id: dual_model05.m 2162 2010-04-04 20:49:45Z aadler $

% Reconstruct
for model= 1:3
   img(model)= inv_solve(imdl(model), vh, vi);
end

% Show image mapped to fine model
for model= 1:3
   subplot(2,3,model)
   show_fem(img(model));
end

print_convert dual_model05b.png;

% Show image mapped to coarse model
for model= 1:3
   subplot(2,3,model)
   img(model).fwd_model = mdl_coarse.fwd_model;
   show_fem(img(model));
end

print_convert dual_model05a.png;


Figure: Reconstructed images mapped onto the coarse model. Left "Fine" mesh (64 elements) Middle Fine mesh (256 elements) Right Fine mesh (576 elements)

Figure: Reconstructed images mapped onto the fine model. Left "Fine" mesh (64 elements) Middle Fine mesh (256 elements) Right Fine mesh (576 elements)

Last Modified: $Date: 2017-02-28 13:12:08 -0500 (Tue, 28 Feb 2017) $ by $Author: aadler $