public class GaussianProcesses extends AbstractClassifier implements OptionHandler, IntervalEstimator, ConditionalDensityEstimator, TechnicalInformationHandler, WeightedInstancesHandler
Modifier and Type | Field and Description |
---|---|
static int |
FILTER_NONE
no filter
|
static int |
FILTER_NORMALIZE
normalizes the data
|
static int |
FILTER_STANDARDIZE
standardizes the data
|
double[][] |
m_L
(negative) covariance matrix in symmetric matrix representation
|
static Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
Constructor and Description |
---|
GaussianProcesses() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances insts)
Method for building the classifier.
|
double |
classifyInstance(Instance inst)
Classifies a given instance.
|
String |
filterTypeTipText()
Returns the tip text for this property
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
Kernel |
getKernel()
Gets the kernel to use.
|
double |
getNoise()
Get the value of noise.
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
double |
getStandardDeviation(Instance inst)
Gives standard deviation of the prediction at the given instance.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
String |
globalInfo()
Returns a string describing classifier
|
String |
kernelTipText()
Returns the tip text for this property
|
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
double |
logDensity(Instance inst,
double value)
Returns natural logarithm of density estimate for given value based on given instance.
|
static void |
main(String[] argv)
Main method for testing this class.
|
String |
noiseTipText()
Returns the tip text for this property
|
double[][] |
predictIntervals(Instance inst,
double confidenceLevel)
Computes a prediction interval for the given instance and confidence
level.
|
void |
setFilterType(SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setKernel(Kernel value)
Sets the kernel to use.
|
void |
setNoise(double v)
Set the level of Gaussian Noise.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
String |
toString()
Prints out the classifier.
|
debugTipText, distributionForInstance, forName, getDebug, getRevision, makeCopies, makeCopy, runClassifier, setDebug
public static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final Tag[] TAGS_FILTER
public double[][] m_L
public String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public Capabilities getCapabilities()
getCapabilities
in interface Classifier
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class AbstractClassifier
Capabilities
public void buildClassifier(Instances insts) throws Exception
buildClassifier
in interface Classifier
insts
- the set of training instancesException
- if the classifier can't be built successfullypublic double classifyInstance(Instance inst) throws Exception
classifyInstance
in interface Classifier
classifyInstance
in class AbstractClassifier
inst
- the instance to be classifiedException
- if instance could not be classified successfullypublic double[][] predictIntervals(Instance inst, double confidenceLevel) throws Exception
predictIntervals
in interface IntervalEstimator
inst
- the instance to make the prediction forconfidenceLevel
- the percentage of cases the interval should coverException
- if interval could not be estimated successfullypublic double getStandardDeviation(Instance inst) throws Exception
inst
- the instance to get the standard deviation forException
- if computation failspublic double logDensity(Instance inst, double value) throws Exception
logDensity
in interface ConditionalDensityEstimator
instance
- the instance to make the prediction for.value
- the value to make the prediction for.Exception
- if the density cannot be computedpublic Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class AbstractClassifier
public void setOptions(String[] options) throws Exception
-D If set, classifier is run in debug mode and may output additional info to the console
-L <double> Level of Gaussian Noise. (default 0.1)
-M <double> Level of Gaussian Noise for the class. (default 0.1)
-N Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number). (default: 250007)
-G <num> The Gamma parameter. (default: 0.01)
setOptions
in interface OptionHandler
setOptions
in class AbstractClassifier
options
- the list of options as an array of stringsException
- if an option is not supportedpublic String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class AbstractClassifier
public String kernelTipText()
public Kernel getKernel()
public void setKernel(Kernel value)
value
- the new kernelpublic String filterTypeTipText()
public SelectedTag getFilterType()
public void setFilterType(SelectedTag newType)
newType
- the new filtering modepublic String noiseTipText()
public double getNoise()
public void setNoise(double v)
v
- Value to assign to noise.public String toString()
public static void main(String[] argv)
argv
- the commandline parametersCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.