public class LinearRegression extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler
-D Produce debugging output. (default no debugging output)
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
| Modifier and Type | Field and Description |
|---|---|
static int |
SELECTION_GREEDY
Attribute selection method: Greedy method
|
static int |
SELECTION_M5
Attribute selection method: M5 method
|
static int |
SELECTION_NONE
Attribute selection method: No attribute selection
|
static Tag[] |
TAGS_SELECTION
Attribute selection methods
|
| Constructor and Description |
|---|
LinearRegression() |
| Modifier and Type | Method and Description |
|---|---|
String |
attributeSelectionMethodTipText()
Returns the tip text for this property
|
void |
buildClassifier(Instances data)
Builds a regression model for the given data.
|
double |
classifyInstance(Instance instance)
Classifies the given instance using the linear regression function.
|
double[] |
coefficients()
Returns the coefficients for this linear model.
|
String |
eliminateColinearAttributesTipText()
Returns the tip text for this property
|
SelectedTag |
getAttributeSelectionMethod()
Gets the method used to select attributes for use in the
linear regression.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getEliminateColinearAttributes()
Get the value of EliminateColinearAttributes.
|
boolean |
getMinimal()
Returns whether to be more memory conservative or being able to output
the model as string.
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
String |
getRevision()
Returns the revision string.
|
double |
getRidge()
Get the value of Ridge.
|
String |
globalInfo()
Returns a string describing this classifier
|
Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] argv)
Generates a linear regression function predictor.
|
String |
minimalTipText()
Returns the tip text for this property.
|
int |
numParameters()
Get the number of coefficients used in the model
|
String |
ridgeTipText()
Returns the tip text for this property
|
void |
setAttributeSelectionMethod(SelectedTag method)
Sets the method used to select attributes for use in the
linear regression.
|
void |
setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
Set the value of EliminateColinearAttributes.
|
void |
setMinimal(boolean value)
Sets whether to be more memory conservative or being able to output
the model as string.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setRidge(double newRidge)
Set the value of Ridge.
|
String |
toString()
Outputs the linear regression model as a string.
|
void |
turnChecksOff()
Turns off checks for missing values, etc.
|
void |
turnChecksOn()
Turns on checks for missing values, etc.
|
debugTipText, distributionForInstance, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebugpublic static final int SELECTION_M5
public static final int SELECTION_NONE
public static final int SELECTION_GREEDY
public static final Tag[] TAGS_SELECTION
public String globalInfo()
public Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClassifierCapabilitiespublic void buildClassifier(Instances data) throws Exception
buildClassifier in interface Classifierdata - the training data to be used for generating the
linear regression functionException - if the classifier could not be built successfullypublic double classifyInstance(Instance instance) throws Exception
classifyInstance in interface ClassifierclassifyInstance in class AbstractClassifierinstance - the test instanceException - if classification can't be done successfullypublic String toString()
public Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class AbstractClassifierpublic void setOptions(String[] options) throws Exception
-D Produce debugging output. (default no debugging output)
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
setOptions in interface OptionHandlersetOptions in class AbstractClassifieroptions - the list of options as an array of stringsException - if an option is not supportedpublic double[] coefficients()
public String[] getOptions()
getOptions in interface OptionHandlergetOptions in class AbstractClassifierpublic String ridgeTipText()
public double getRidge()
public void setRidge(double newRidge)
newRidge - Value to assign to Ridge.public String eliminateColinearAttributesTipText()
public boolean getEliminateColinearAttributes()
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
newEliminateColinearAttributes - Value to assign to EliminateColinearAttributes.public int numParameters()
public String attributeSelectionMethodTipText()
public void setAttributeSelectionMethod(SelectedTag method)
method - the attribute selection method to use.public SelectedTag getAttributeSelectionMethod()
public String minimalTipText()
public void setMinimal(boolean value)
value - if true memory will be conservedpublic boolean getMinimal()
public void turnChecksOff()
public void turnChecksOn()
public String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(String[] argv)
argv - the optionsCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.