public class M5P extends M5Base implements Drawable
@inproceedings{Quinlan1992,
address = {Singapore},
author = {Ross J. Quinlan},
booktitle = {5th Australian Joint Conference on Artificial Intelligence},
pages = {343-348},
publisher = {World Scientific},
title = {Learning with Continuous Classes},
year = {1992}
}
@inproceedings{Wang1997,
author = {Y. Wang and I. H. Witten},
booktitle = {Poster papers of the 9th European Conference on Machine Learning},
publisher = {Springer},
title = {Induction of model trees for predicting continuous classes},
year = {1997}
}
Valid options are:
-N Use unpruned tree/rules
-U Use unsmoothed predictions
-R Build regression tree/rule rather than a model tree/rule
-M <minimum number of instances> Set minimum number of instances per leaf (default 4)
-L Save instances at the nodes in the tree (for visualization purposes)
BayesNet, Newick, NOT_DRAWABLE, TREE| Constructor and Description |
|---|
M5P()
Creates a new
M5P instance. |
| Modifier and Type | Method and Description |
|---|---|
String[] |
getOptions()
Gets the current settings of the classifier.
|
String |
getRevision()
Returns the revision string.
|
boolean |
getSaveInstances()
Get whether instance data is being save.
|
String |
graph()
Return a dot style String describing the tree.
|
int |
graphType()
Returns the type of graph this classifier
represents.
|
Enumeration |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(String[] args)
Main method by which this class can be tested
|
String |
saveInstancesTipText()
Returns the tip text for this property
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setSaveInstances(boolean save)
Set whether to save instance data at each node in the
tree for visualization purposes
|
buildClassifier, buildRegressionTreeTipText, classifyInstance, enumerateMeasures, generateRulesTipText, getBuildRegressionTree, getCapabilities, getM5RootNode, getMeasure, getMinNumInstances, getTechnicalInformation, getUnpruned, getUseUnsmoothed, globalInfo, measureNumRules, minNumInstancesTipText, setBuildRegressionTree, setMinNumInstances, setUnpruned, setUseUnsmoothed, toString, unprunedTipText, useUnsmoothedTipTextdebugTipText, distributionForInstance, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebugpublic int graphType()
public String saveInstancesTipText()
public void setSaveInstances(boolean save)
save - a boolean valuepublic boolean getSaveInstances()
boolean valuepublic Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class M5Basepublic void setOptions(String[] options) throws Exception
-N Use unpruned tree/rules
-U Use unsmoothed predictions
-R Build regression tree/rule rather than a model tree/rule
-M <minimum number of instances> Set minimum number of instances per leaf (default 4)
-L Save instances at the nodes in the tree (for visualization purposes)
setOptions in interface OptionHandlersetOptions in class M5Baseoptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface OptionHandlergetOptions in class M5Basepublic String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(String[] args)
args - an array of optionsCopyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.