public abstract class M5Base extends AbstractClassifier implements AdditionalMeasureProducer, TechnicalInformationHandler
The original algorithm M5 was invented by Quinlan:
Quinlan J. R. (1992). Learning with continuous classes. Proceedings of
the Australian Joint Conference on Artificial Intelligence. 343--348.
World Scientific, Singapore.
-U
Use unsmoothed predictions.
-R
Build regression tree/rule rather than model tree/rule
| Constructor and Description |
|---|
M5Base()
Constructor
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Generates the classifier.
|
String |
buildRegressionTreeTipText()
Returns the tip text for this property
|
double |
classifyInstance(Instance inst)
Calculates a prediction for an instance using a set of rules
or an M5 model tree
|
Enumeration |
enumerateMeasures()
Returns an enumeration of the additional measure names
|
String |
generateRulesTipText()
Returns the tip text for this property
|
boolean |
getBuildRegressionTree()
Get the value of regressionTree.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier, i.e., of LinearRegression.
|
RuleNode |
getM5RootNode() |
double |
getMeasure(String additionalMeasureName)
Returns the value of the named measure
|
double |
getMinNumInstances()
Get the minimum number of instances to allow at a leaf node
|
String[] |
getOptions()
Gets the current settings of the classifier.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getUnpruned()
Get whether unpruned tree/rules are being generated
|
boolean |
getUseUnsmoothed()
Get whether or not smoothing is being used
|
String |
globalInfo()
returns information about the classifier
|
Enumeration |
listOptions()
Returns an enumeration describing the available options
|
double |
measureNumRules()
return the number of rules
|
String |
minNumInstancesTipText()
Returns the tip text for this property
|
void |
setBuildRegressionTree(boolean newregressionTree)
Set the value of regressionTree.
|
void |
setMinNumInstances(double minNum)
Set the minimum number of instances to allow at a leaf node
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setUnpruned(boolean unpruned)
Use unpruned tree/rules
|
void |
setUseUnsmoothed(boolean s)
Use unsmoothed predictions
|
String |
toString()
Returns a description of the classifier
|
String |
unprunedTipText()
Returns the tip text for this property
|
String |
useUnsmoothedTipText()
Returns the tip text for this property
|
debugTipText, distributionForInstance, forName, getDebug, getRevision, makeCopies, makeCopy, runClassifier, setDebugpublic String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class AbstractClassifierpublic void setOptions(String[] options) throws Exception
-U
Use unsmoothed predictions.
-R
Build a regression tree rather than a model tree.
setOptions in interface OptionHandlersetOptions in class AbstractClassifieroptions - the list of options as an array of stringsException - if an option is not supportedpublic String[] getOptions()
getOptions in interface OptionHandlergetOptions in class AbstractClassifierpublic String unprunedTipText()
public void setUnpruned(boolean unpruned)
unpruned - true if unpruned tree/rules are to be generatedpublic boolean getUnpruned()
public String generateRulesTipText()
public String useUnsmoothedTipText()
public void setUseUnsmoothed(boolean s)
s - true if unsmoothed predictions are to be usedpublic boolean getUseUnsmoothed()
public String buildRegressionTreeTipText()
public boolean getBuildRegressionTree()
public void setBuildRegressionTree(boolean newregressionTree)
newregressionTree - Value to assign to regressionTree.public String minNumInstancesTipText()
public void setMinNumInstances(double minNum)
minNum - the minimum number of instancespublic double getMinNumInstances()
double valuepublic Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClassifierCapabilitiespublic void buildClassifier(Instances data) throws Exception
buildClassifier in interface Classifierdata - set of instances serving as training dataException - if the classifier has not been generated
successfullypublic double classifyInstance(Instance inst) throws Exception
classifyInstance in interface ClassifierclassifyInstance in class AbstractClassifierinst - the instance whos class value is to be predictedException - if a prediction can't be made.public String toString()
public Enumeration enumerateMeasures()
enumerateMeasures in interface AdditionalMeasureProducerpublic double getMeasure(String additionalMeasureName)
getMeasure in interface AdditionalMeasureProduceradditionalMeasureName - the name of the measure to query for its valueException - if the named measure is not supportedpublic double measureNumRules()
public RuleNode getM5RootNode()
Copyright © 2012 University of Waikato, Hamilton, NZ. All Rights Reserved.